59 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			59 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| #####################################################
 | |
| from typing import List, Text, Any
 | |
| import torch.nn as nn
 | |
| from models.cell_operations import ResNetBasicblock
 | |
| from models.cell_infers.cells import InferCell
 | |
| 
 | |
| 
 | |
| class DynamicShapeTinyNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, channels: List[int], genotype: Any, num_classes: int):
 | |
|     super(DynamicShapeTinyNet, self).__init__()
 | |
|     self._channels = channels
 | |
|     if len(channels) % 3 != 2:
 | |
|       raise ValueError('invalid number of layers : {:}'.format(len(channels)))
 | |
|     self._num_stage = N = len(channels) // 3
 | |
| 
 | |
|     self.stem = nn.Sequential(
 | |
|                     nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
 | |
|                     nn.BatchNorm2d(channels[0]))
 | |
| 
 | |
|     # layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N    
 | |
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
| 
 | |
|     c_prev = channels[0]
 | |
|     self.cells = nn.ModuleList()
 | |
|     for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
 | |
|       if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
 | |
|       else         : cell = InferCell(genotype, c_prev, c_curr, 1)
 | |
|       self.cells.append( cell )
 | |
|       c_prev = cell.out_dim
 | |
|     self._num_layer = len(self.cells)
 | |
| 
 | |
|     self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(c_prev, num_classes)
 | |
| 
 | |
|   def get_message(self) -> Text:
 | |
|     string = self.extra_repr()
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
 | |
|     return string
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     feature = self.stem(inputs)
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       feature = cell(feature)
 | |
| 
 | |
|     out = self.lastact(feature)
 | |
|     out = self.global_pooling( out )
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
| 
 | |
|     return out, logits
 |