52 lines
2.0 KiB
Python
52 lines
2.0 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
|
#####################################################
|
|
# I write this package to make AutoDL-Projects to be compatible with the old GDAS projects.
|
|
# Ideally, this package will be merged into lib/models/cell_infers in future.
|
|
# Currently, this package is used to reproduce the results in GDAS (Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019).
|
|
##################################################
|
|
|
|
import os, torch
|
|
|
|
|
|
def obtain_nas_infer_model(config, extra_model_path=None):
|
|
|
|
if config.arch == "dxys":
|
|
from .DXYs import CifarNet, ImageNet, Networks
|
|
from .DXYs import build_genotype_from_dict
|
|
|
|
if config.genotype is None:
|
|
if extra_model_path is not None and not os.path.isfile(extra_model_path):
|
|
raise ValueError(
|
|
"When genotype in confiig is None, extra_model_path must be set as a path instead of {:}".format(
|
|
extra_model_path
|
|
)
|
|
)
|
|
xdata = torch.load(extra_model_path)
|
|
current_epoch = xdata["epoch"]
|
|
genotype_dict = xdata["genotypes"][current_epoch - 1]
|
|
genotype = build_genotype_from_dict(genotype_dict)
|
|
else:
|
|
genotype = Networks[config.genotype]
|
|
if config.dataset == "cifar":
|
|
return CifarNet(
|
|
config.ichannel,
|
|
config.layers,
|
|
config.stem_multi,
|
|
config.auxiliary,
|
|
genotype,
|
|
config.class_num,
|
|
)
|
|
elif config.dataset == "imagenet":
|
|
return ImageNet(
|
|
config.ichannel,
|
|
config.layers,
|
|
config.auxiliary,
|
|
genotype,
|
|
config.class_num,
|
|
)
|
|
else:
|
|
raise ValueError("invalid dataset : {:}".format(config.dataset))
|
|
else:
|
|
raise ValueError("invalid nas arch type : {:}".format(config.arch))
|