autodl-projects/xautodl/datasets/synthetic_env.py
2021-05-23 19:14:12 +00:00

174 lines
5.6 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import math
import random
import numpy as np
from typing import List, Optional, Dict
import torch
import torch.utils.data as data
from .synthetic_utils import TimeStamp
def is_list_tuple(x):
return isinstance(x, (tuple, list))
def zip_sequence(sequence):
def _combine(*alist):
if is_list_tuple(alist[0]):
return [_combine(*xlist) for xlist in zip(*alist)]
else:
return torch.cat(alist, dim=0)
def unsqueeze(a):
if is_list_tuple(a):
return [unsqueeze(x) for x in a]
else:
return a.unsqueeze(dim=0)
with torch.no_grad():
sequence = [unsqueeze(a) for a in sequence]
return _combine(*sequence)
class SyntheticDEnv(data.Dataset):
"""The synethtic dynamic environment."""
def __init__(
self,
mean_functors: List[data.Dataset],
cov_functors: List[List[data.Dataset]],
num_per_task: int = 5000,
timestamp_config: Optional[Dict] = None,
mode: Optional[str] = None,
timestamp_noise_scale: float = 0.3,
):
self._ndim = len(mean_functors)
assert self._ndim == len(
cov_functors
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functors))
for cov_functor in cov_functors:
assert self._ndim == len(
cov_functor
), "length does not match {:} vs. {:}".format(self._ndim, len(cov_functor))
self._num_per_task = num_per_task
if timestamp_config is None:
timestamp_config = dict(mode=mode)
elif "mode" not in timestamp_config:
timestamp_config["mode"] = mode
self._timestamp_generator = TimeStamp(**timestamp_config)
self._timestamp_noise_scale = timestamp_noise_scale
self._mean_functors = mean_functors
self._cov_functors = cov_functors
self._oracle_map = None
@property
def min_timestamp(self):
return self._timestamp_generator.min_timestamp
@property
def max_timestamp(self):
return self._timestamp_generator.max_timestamp
@property
def timestamp_interval(self):
return self._timestamp_generator.interval
def random_timestamp(self, min_timestamp=None, max_timestamp=None):
if min_timestamp is None:
min_timestamp = self.min_timestamp
if max_timestamp is None:
max_timestamp = self.max_timestamp
return random.random() * (max_timestamp - min_timestamp) + min_timestamp
def get_timestamp(self, index):
if index is None:
timestamps = []
for index in range(len(self._timestamp_generator)):
timestamps.append(self._timestamp_generator[index][1])
return tuple(timestamps)
else:
index, timestamp = self._timestamp_generator[index]
return timestamp
def set_oracle_map(self, functor):
self._oracle_map = functor
def __iter__(self):
self._iter_num = 0
return self
def __next__(self):
if self._iter_num >= len(self):
raise StopIteration
self._iter_num += 1
return self.__getitem__(self._iter_num - 1)
def __getitem__(self, index):
assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
index, timestamp = self._timestamp_generator[index]
return self.__call__(timestamp)
def seq_call(self, timestamps):
with torch.no_grad():
if isinstance(timestamps, torch.Tensor):
timestamps = timestamps.cpu().tolist()
xdata = [self.__call__(timestamp) for timestamp in timestamps]
return zip_sequence(xdata)
def __call__(self, timestamp):
mean_list = [functor(timestamp) for functor in self._mean_functors]
cov_matrix = [
[abs(cov_gen(timestamp)) for cov_gen in cov_functor]
for cov_functor in self._cov_functors
]
dataset = np.random.multivariate_normal(
mean_list, cov_matrix, size=self._num_per_task
)
if self._oracle_map is None:
return torch.Tensor([timestamp]), torch.Tensor(dataset)
else:
targets = self._oracle_map.noise_call(dataset, timestamp)
return torch.Tensor([timestamp]), (
torch.Tensor(dataset),
torch.Tensor(targets),
)
def __len__(self):
return len(self._timestamp_generator)
def __repr__(self):
return "{name}({cur_num:}/{total} elements, ndim={ndim}, num_per_task={num_per_task}, range=[{xrange_min:.5f}~{xrange_max:.5f}], mode={mode})".format(
name=self.__class__.__name__,
cur_num=len(self),
total=len(self._timestamp_generator),
ndim=self._ndim,
num_per_task=self._num_per_task,
xrange_min=self.min_timestamp,
xrange_max=self.max_timestamp,
mode=self._timestamp_generator.mode,
)
class EnvSampler:
def __init__(self, env, batch, enlarge):
indexes = list(range(len(env)))
self._indexes = indexes * enlarge
self._batch = batch
self._iterations = len(self._indexes) // self._batch
def __iter__(self):
random.shuffle(self._indexes)
for it in range(self._iterations):
indexes = self._indexes[it * self._batch : (it + 1) * self._batch]
yield indexes
def __len__(self):
return self._iterations