240 lines
8.6 KiB
Python
240 lines
8.6 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
#####################################################
|
|
# python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16
|
|
#####################################################
|
|
import sys, time, copy, torch, random, argparse
|
|
from tqdm import tqdm
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
|
from log_utils import time_string
|
|
from log_utils import AverageMeter, convert_secs2time
|
|
|
|
from utils import split_str2indexes
|
|
|
|
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
from datasets.synthetic_core import get_synthetic_env
|
|
from models.xcore import get_model
|
|
from xlayers import super_core
|
|
|
|
|
|
from lfna_utils import lfna_setup, train_model, TimeData
|
|
|
|
|
|
class LFNAmlp:
|
|
"""A LFNA meta-model that uses the MLP as delta-net."""
|
|
|
|
def __init__(self, obs_dim, hidden_sizes, act_name, criterion):
|
|
self.delta_net = super_core.SuperSequential(
|
|
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
|
|
super_core.super_name2activation[act_name](),
|
|
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
|
|
super_core.super_name2activation[act_name](),
|
|
super_core.SuperLinear(hidden_sizes[1], 1),
|
|
)
|
|
self.meta_optimizer = torch.optim.Adam(
|
|
self.delta_net.parameters(), lr=0.001, amsgrad=True
|
|
)
|
|
self.criterion = criterion
|
|
|
|
def adapt(self, model, seq_datasets):
|
|
delta_inputs = []
|
|
container = model.get_w_container()
|
|
for iseq, dataset in enumerate(seq_datasets):
|
|
y_hat = model.forward_with_container(dataset.x, container)
|
|
loss = self.criterion(y_hat, dataset.y)
|
|
gradients = torch.autograd.grad(loss, container.parameters())
|
|
with torch.no_grad():
|
|
flatten_g = container.flatten(gradients)
|
|
delta_inputs.append(flatten_g)
|
|
flatten_w = container.no_grad_clone().flatten()
|
|
delta_inputs.append(flatten_w)
|
|
delta_inputs = torch.stack(delta_inputs, dim=-1)
|
|
delta = self.delta_net(delta_inputs)
|
|
|
|
delta = torch.clamp(delta, -0.8, 0.8)
|
|
unflatten_delta = container.unflatten(delta)
|
|
future_container = container.no_grad_clone().additive(unflatten_delta)
|
|
return future_container
|
|
|
|
def step(self):
|
|
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
|
self.meta_optimizer.step()
|
|
|
|
def zero_grad(self):
|
|
self.meta_optimizer.zero_grad()
|
|
self.delta_net.zero_grad()
|
|
|
|
def state_dict(self):
|
|
return dict(
|
|
delta_net=self.delta_net.state_dict(),
|
|
meta_optimizer=self.meta_optimizer.state_dict(),
|
|
)
|
|
|
|
|
|
def main(args):
|
|
logger, env_info, model_kwargs = lfna_setup(args)
|
|
dynamic_env = env_info["dynamic_env"]
|
|
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
|
|
|
total_time = env_info["total"]
|
|
for i in range(total_time):
|
|
for xkey in ("timestamp", "x", "y"):
|
|
nkey = "{:}-{:}".format(i, xkey)
|
|
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
|
train_time_bar = total_time // 2
|
|
network = get_model(dict(model_type="simple_mlp"), **model_kwargs)
|
|
|
|
criterion = torch.nn.MSELoss()
|
|
logger.log("There are {:} weights.".format(network.get_w_container().numel()))
|
|
|
|
adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion)
|
|
|
|
# pre-train the model
|
|
init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
|
|
init_loss = train_model(network, init_dataset, args.init_lr, args.epochs)
|
|
logger.log("The pre-training loss is {:.4f}".format(init_loss))
|
|
|
|
# LFNA meta-training
|
|
meta_loss_meter = AverageMeter()
|
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
|
for iepoch in range(args.epochs):
|
|
|
|
need_time = "Time Left: {:}".format(
|
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
)
|
|
logger.log(
|
|
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
|
+ need_time
|
|
)
|
|
|
|
adaptor.zero_grad()
|
|
|
|
batch_indexes, meta_losses = [], []
|
|
for ibatch in range(args.meta_batch):
|
|
sampled_timestamp = random.random() * train_time_bar
|
|
batch_indexes.append("{:.3f}".format(sampled_timestamp))
|
|
seq_datasets = []
|
|
for iseq in range(args.meta_seq + 1):
|
|
cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval
|
|
cur_time, (x, y) = dynamic_env(cur_time)
|
|
seq_datasets.append(TimeData(cur_time, x, y))
|
|
history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1]
|
|
future_container = adaptor.adapt(network, history_datasets)
|
|
future_y_hat = network.forward_with_container(
|
|
future_dataset.x, future_container
|
|
)
|
|
future_loss = adaptor.criterion(future_y_hat, future_dataset.y)
|
|
meta_losses.append(future_loss)
|
|
meta_loss = torch.stack(meta_losses).mean()
|
|
meta_loss.backward()
|
|
adaptor.step()
|
|
|
|
meta_loss_meter.update(meta_loss.item())
|
|
|
|
logger.log(
|
|
"meta-loss: {:.4f} ({:.4f}) batch: {:}".format(
|
|
meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5])
|
|
)
|
|
)
|
|
if iepoch % 200 == 0:
|
|
save_checkpoint(
|
|
{"adaptor": adaptor.state_dict(), "iepoch": iepoch},
|
|
logger.path("model"),
|
|
logger,
|
|
)
|
|
per_epoch_time.update(time.time() - start_time)
|
|
start_time = time.time()
|
|
|
|
w_container_per_epoch = dict()
|
|
for idx in range(1, env_info["total"]):
|
|
future_time = env_info["{:}-timestamp".format(idx)]
|
|
future_x = env_info["{:}-x".format(idx)]
|
|
future_y = env_info["{:}-y".format(idx)]
|
|
seq_datasets = []
|
|
for iseq in range(1, args.meta_seq + 1):
|
|
cur_time = future_time - iseq * dynamic_env.timestamp_interval
|
|
cur_time, (x, y) = dynamic_env(cur_time)
|
|
seq_datasets.append(TimeData(cur_time, x, y))
|
|
seq_datasets.reverse()
|
|
future_container = adaptor.adapt(network, seq_datasets)
|
|
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
|
with torch.no_grad():
|
|
future_y_hat = network.forward_with_container(
|
|
future_x, w_container_per_epoch[idx]
|
|
)
|
|
future_loss = adaptor.criterion(future_y_hat, future_y)
|
|
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
|
|
|
|
save_checkpoint(
|
|
{"w_container_per_epoch": w_container_per_epoch},
|
|
logger.path(None) / "final-ckp.pth",
|
|
logger,
|
|
)
|
|
|
|
logger.log("-" * 200 + "\n")
|
|
logger.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("Use the data in the past.")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./outputs/lfna-synthetic/lfna-fix-init",
|
|
help="The checkpoint directory.",
|
|
)
|
|
parser.add_argument(
|
|
"--env_version",
|
|
type=str,
|
|
required=True,
|
|
help="The synthetic enviornment version.",
|
|
)
|
|
parser.add_argument(
|
|
"--hidden_dim",
|
|
type=int,
|
|
required=True,
|
|
help="The hidden dimension.",
|
|
)
|
|
#####
|
|
parser.add_argument(
|
|
"--init_lr",
|
|
type=float,
|
|
default=0.1,
|
|
help="The initial learning rate for the optimizer (default is Adam)",
|
|
)
|
|
parser.add_argument(
|
|
"--meta_batch",
|
|
type=int,
|
|
default=32,
|
|
help="The batch size for the meta-model",
|
|
)
|
|
parser.add_argument(
|
|
"--meta_seq",
|
|
type=int,
|
|
default=10,
|
|
help="The length of the sequence for meta-model.",
|
|
)
|
|
parser.add_argument(
|
|
"--epochs",
|
|
type=int,
|
|
default=1000,
|
|
help="The total number of epochs.",
|
|
)
|
|
# Random Seed
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
if args.rand_seed is None or args.rand_seed < 0:
|
|
args.rand_seed = random.randint(1, 100000)
|
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
|
args.save_dir = "{:}-{:}-d{:}".format(
|
|
args.save_dir, args.env_version, args.hidden_dim
|
|
)
|
|
main(args)
|