autodl-projects/exps/LFNA/backup/lfna-fix-init.py
2021-05-13 15:32:44 +08:00

240 lines
8.6 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
# python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16
#####################################################
import sys, time, copy, torch, random, argparse
from tqdm import tqdm
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
from log_utils import time_string
from log_utils import AverageMeter, convert_secs2time
from utils import split_str2indexes
from procedures.advanced_main import basic_train_fn, basic_eval_fn
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
from datasets.synthetic_core import get_synthetic_env
from models.xcore import get_model
from xlayers import super_core
from lfna_utils import lfna_setup, train_model, TimeData
class LFNAmlp:
"""A LFNA meta-model that uses the MLP as delta-net."""
def __init__(self, obs_dim, hidden_sizes, act_name, criterion):
self.delta_net = super_core.SuperSequential(
super_core.SuperLinear(obs_dim, hidden_sizes[0]),
super_core.super_name2activation[act_name](),
super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]),
super_core.super_name2activation[act_name](),
super_core.SuperLinear(hidden_sizes[1], 1),
)
self.meta_optimizer = torch.optim.Adam(
self.delta_net.parameters(), lr=0.001, amsgrad=True
)
self.criterion = criterion
def adapt(self, model, seq_datasets):
delta_inputs = []
container = model.get_w_container()
for iseq, dataset in enumerate(seq_datasets):
y_hat = model.forward_with_container(dataset.x, container)
loss = self.criterion(y_hat, dataset.y)
gradients = torch.autograd.grad(loss, container.parameters())
with torch.no_grad():
flatten_g = container.flatten(gradients)
delta_inputs.append(flatten_g)
flatten_w = container.no_grad_clone().flatten()
delta_inputs.append(flatten_w)
delta_inputs = torch.stack(delta_inputs, dim=-1)
delta = self.delta_net(delta_inputs)
delta = torch.clamp(delta, -0.8, 0.8)
unflatten_delta = container.unflatten(delta)
future_container = container.no_grad_clone().additive(unflatten_delta)
return future_container
def step(self):
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
self.meta_optimizer.step()
def zero_grad(self):
self.meta_optimizer.zero_grad()
self.delta_net.zero_grad()
def state_dict(self):
return dict(
delta_net=self.delta_net.state_dict(),
meta_optimizer=self.meta_optimizer.state_dict(),
)
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
dynamic_env = env_info["dynamic_env"]
model = get_model(dict(model_type="simple_mlp"), **model_kwargs)
total_time = env_info["total"]
for i in range(total_time):
for xkey in ("timestamp", "x", "y"):
nkey = "{:}-{:}".format(i, xkey)
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
train_time_bar = total_time // 2
network = get_model(dict(model_type="simple_mlp"), **model_kwargs)
criterion = torch.nn.MSELoss()
logger.log("There are {:} weights.".format(network.get_w_container().numel()))
adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion)
# pre-train the model
init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"])
init_loss = train_model(network, init_dataset, args.init_lr, args.epochs)
logger.log("The pre-training loss is {:.4f}".format(init_loss))
# LFNA meta-training
meta_loss_meter = AverageMeter()
per_epoch_time, start_time = AverageMeter(), time.time()
for iepoch in range(args.epochs):
need_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
logger.log(
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
+ need_time
)
adaptor.zero_grad()
batch_indexes, meta_losses = [], []
for ibatch in range(args.meta_batch):
sampled_timestamp = random.random() * train_time_bar
batch_indexes.append("{:.3f}".format(sampled_timestamp))
seq_datasets = []
for iseq in range(args.meta_seq + 1):
cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval
cur_time, (x, y) = dynamic_env(cur_time)
seq_datasets.append(TimeData(cur_time, x, y))
history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1]
future_container = adaptor.adapt(network, history_datasets)
future_y_hat = network.forward_with_container(
future_dataset.x, future_container
)
future_loss = adaptor.criterion(future_y_hat, future_dataset.y)
meta_losses.append(future_loss)
meta_loss = torch.stack(meta_losses).mean()
meta_loss.backward()
adaptor.step()
meta_loss_meter.update(meta_loss.item())
logger.log(
"meta-loss: {:.4f} ({:.4f}) batch: {:}".format(
meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5])
)
)
if iepoch % 200 == 0:
save_checkpoint(
{"adaptor": adaptor.state_dict(), "iepoch": iepoch},
logger.path("model"),
logger,
)
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
w_container_per_epoch = dict()
for idx in range(1, env_info["total"]):
future_time = env_info["{:}-timestamp".format(idx)]
future_x = env_info["{:}-x".format(idx)]
future_y = env_info["{:}-y".format(idx)]
seq_datasets = []
for iseq in range(1, args.meta_seq + 1):
cur_time = future_time - iseq * dynamic_env.timestamp_interval
cur_time, (x, y) = dynamic_env(cur_time)
seq_datasets.append(TimeData(cur_time, x, y))
seq_datasets.reverse()
future_container = adaptor.adapt(network, seq_datasets)
w_container_per_epoch[idx] = future_container.no_grad_clone()
with torch.no_grad():
future_y_hat = network.forward_with_container(
future_x, w_container_per_epoch[idx]
)
future_loss = adaptor.criterion(future_y_hat, future_y)
logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item()))
save_checkpoint(
{"w_container_per_epoch": w_container_per_epoch},
logger.path(None) / "final-ckp.pth",
logger,
)
logger.log("-" * 200 + "\n")
logger.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Use the data in the past.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/lfna-synthetic/lfna-fix-init",
help="The checkpoint directory.",
)
parser.add_argument(
"--env_version",
type=str,
required=True,
help="The synthetic enviornment version.",
)
parser.add_argument(
"--hidden_dim",
type=int,
required=True,
help="The hidden dimension.",
)
#####
parser.add_argument(
"--init_lr",
type=float,
default=0.1,
help="The initial learning rate for the optimizer (default is Adam)",
)
parser.add_argument(
"--meta_batch",
type=int,
default=32,
help="The batch size for the meta-model",
)
parser.add_argument(
"--meta_seq",
type=int,
default=10,
help="The length of the sequence for meta-model.",
)
parser.add_argument(
"--epochs",
type=int,
default=1000,
help="The total number of epochs.",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
assert args.save_dir is not None, "The save dir argument can not be None"
args.save_dir = "{:}-{:}-d{:}".format(
args.save_dir, args.env_version, args.hidden_dim
)
main(args)