327 lines
12 KiB
Python
327 lines
12 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
from os import path as osp
|
|
from typing import List, Text
|
|
import torch
|
|
|
|
__all__ = [
|
|
"change_key",
|
|
"get_cell_based_tiny_net",
|
|
"get_search_spaces",
|
|
"get_cifar_models",
|
|
"get_imagenet_models",
|
|
"obtain_model",
|
|
"obtain_search_model",
|
|
"load_net_from_checkpoint",
|
|
"CellStructure",
|
|
"CellArchitectures",
|
|
]
|
|
|
|
# useful modules
|
|
from config_utils import dict2config
|
|
from models.SharedUtils import change_key
|
|
from models.cell_searchs import CellStructure, CellArchitectures
|
|
|
|
|
|
# Cell-based NAS Models
|
|
def get_cell_based_tiny_net(config):
|
|
if isinstance(config, dict):
|
|
config = dict2config(config, None) # to support the argument being a dict
|
|
super_type = getattr(config, "super_type", "basic")
|
|
group_names = ["DARTS-V1", "DARTS-V2", "GDAS", "SETN", "ENAS", "RANDOM", "generic"]
|
|
if super_type == "basic" and config.name in group_names:
|
|
from .cell_searchs import nas201_super_nets as nas_super_nets
|
|
|
|
try:
|
|
return nas_super_nets[config.name](
|
|
config.C,
|
|
config.N,
|
|
config.max_nodes,
|
|
config.num_classes,
|
|
config.space,
|
|
config.affine,
|
|
config.track_running_stats,
|
|
)
|
|
except:
|
|
return nas_super_nets[config.name](
|
|
config.C, config.N, config.max_nodes, config.num_classes, config.space
|
|
)
|
|
elif super_type == "search-shape":
|
|
from .shape_searchs import GenericNAS301Model
|
|
|
|
genotype = CellStructure.str2structure(config.genotype)
|
|
return GenericNAS301Model(
|
|
config.candidate_Cs,
|
|
config.max_num_Cs,
|
|
genotype,
|
|
config.num_classes,
|
|
config.affine,
|
|
config.track_running_stats,
|
|
)
|
|
elif super_type == "nasnet-super":
|
|
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
|
|
|
return nas_super_nets[config.name](
|
|
config.C,
|
|
config.N,
|
|
config.steps,
|
|
config.multiplier,
|
|
config.stem_multiplier,
|
|
config.num_classes,
|
|
config.space,
|
|
config.affine,
|
|
config.track_running_stats,
|
|
)
|
|
elif config.name == "infer.tiny":
|
|
from .cell_infers import TinyNetwork
|
|
|
|
if hasattr(config, "genotype"):
|
|
genotype = config.genotype
|
|
elif hasattr(config, "arch_str"):
|
|
genotype = CellStructure.str2structure(config.arch_str)
|
|
else:
|
|
raise ValueError(
|
|
"Can not find genotype from this config : {:}".format(config)
|
|
)
|
|
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
|
|
elif config.name == "infer.shape.tiny":
|
|
from .shape_infers import DynamicShapeTinyNet
|
|
|
|
if isinstance(config.channels, str):
|
|
channels = tuple([int(x) for x in config.channels.split(":")])
|
|
else:
|
|
channels = config.channels
|
|
genotype = CellStructure.str2structure(config.genotype)
|
|
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
|
|
elif config.name == "infer.nasnet-cifar":
|
|
from .cell_infers import NASNetonCIFAR
|
|
|
|
raise NotImplementedError
|
|
else:
|
|
raise ValueError("invalid network name : {:}".format(config.name))
|
|
|
|
|
|
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
|
|
def get_search_spaces(xtype, name) -> List[Text]:
|
|
if xtype == "cell" or xtype == "tss": # The topology search space.
|
|
from .cell_operations import SearchSpaceNames
|
|
|
|
assert name in SearchSpaceNames, "invalid name [{:}] in {:}".format(
|
|
name, SearchSpaceNames.keys()
|
|
)
|
|
return SearchSpaceNames[name]
|
|
elif xtype == "sss": # The size search space.
|
|
if name in ["nats-bench", "nats-bench-size"]:
|
|
return {"candidates": [8, 16, 24, 32, 40, 48, 56, 64], "numbers": 5}
|
|
else:
|
|
raise ValueError("Invalid name : {:}".format(name))
|
|
else:
|
|
raise ValueError("invalid search-space type is {:}".format(xtype))
|
|
|
|
|
|
def get_cifar_models(config, extra_path=None):
|
|
super_type = getattr(config, "super_type", "basic")
|
|
if super_type == "basic":
|
|
from .CifarResNet import CifarResNet
|
|
from .CifarDenseNet import DenseNet
|
|
from .CifarWideResNet import CifarWideResNet
|
|
|
|
if config.arch == "resnet":
|
|
return CifarResNet(
|
|
config.module, config.depth, config.class_num, config.zero_init_residual
|
|
)
|
|
elif config.arch == "densenet":
|
|
return DenseNet(
|
|
config.growthRate,
|
|
config.depth,
|
|
config.reduction,
|
|
config.class_num,
|
|
config.bottleneck,
|
|
)
|
|
elif config.arch == "wideresnet":
|
|
return CifarWideResNet(
|
|
config.depth, config.wide_factor, config.class_num, config.dropout
|
|
)
|
|
else:
|
|
raise ValueError("invalid module type : {:}".format(config.arch))
|
|
elif super_type.startswith("infer"):
|
|
from .shape_infers import InferWidthCifarResNet
|
|
from .shape_infers import InferDepthCifarResNet
|
|
from .shape_infers import InferCifarResNet
|
|
from .cell_infers import NASNetonCIFAR
|
|
|
|
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
|
|
super_type
|
|
)
|
|
infer_mode = super_type.split("-")[1]
|
|
if infer_mode == "width":
|
|
return InferWidthCifarResNet(
|
|
config.module,
|
|
config.depth,
|
|
config.xchannels,
|
|
config.class_num,
|
|
config.zero_init_residual,
|
|
)
|
|
elif infer_mode == "depth":
|
|
return InferDepthCifarResNet(
|
|
config.module,
|
|
config.depth,
|
|
config.xblocks,
|
|
config.class_num,
|
|
config.zero_init_residual,
|
|
)
|
|
elif infer_mode == "shape":
|
|
return InferCifarResNet(
|
|
config.module,
|
|
config.depth,
|
|
config.xblocks,
|
|
config.xchannels,
|
|
config.class_num,
|
|
config.zero_init_residual,
|
|
)
|
|
elif infer_mode == "nasnet.cifar":
|
|
genotype = config.genotype
|
|
if extra_path is not None: # reload genotype by extra_path
|
|
if not osp.isfile(extra_path):
|
|
raise ValueError("invalid extra_path : {:}".format(extra_path))
|
|
xdata = torch.load(extra_path)
|
|
current_epoch = xdata["epoch"]
|
|
genotype = xdata["genotypes"][current_epoch - 1]
|
|
C = config.C if hasattr(config, "C") else config.ichannel
|
|
N = config.N if hasattr(config, "N") else config.layers
|
|
return NASNetonCIFAR(
|
|
C, N, config.stem_multi, config.class_num, genotype, config.auxiliary
|
|
)
|
|
else:
|
|
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
|
|
else:
|
|
raise ValueError("invalid super-type : {:}".format(super_type))
|
|
|
|
|
|
def get_imagenet_models(config):
|
|
super_type = getattr(config, "super_type", "basic")
|
|
if super_type == "basic":
|
|
from .ImageNet_ResNet import ResNet
|
|
from .ImageNet_MobileNetV2 import MobileNetV2
|
|
|
|
if config.arch == "resnet":
|
|
return ResNet(
|
|
config.block_name,
|
|
config.layers,
|
|
config.deep_stem,
|
|
config.class_num,
|
|
config.zero_init_residual,
|
|
config.groups,
|
|
config.width_per_group,
|
|
)
|
|
elif config.arch == "mobilenet_v2":
|
|
return MobileNetV2(
|
|
config.class_num,
|
|
config.width_multi,
|
|
config.input_channel,
|
|
config.last_channel,
|
|
"InvertedResidual",
|
|
config.dropout,
|
|
)
|
|
else:
|
|
raise ValueError("invalid arch : {:}".format(config.arch))
|
|
elif super_type.startswith("infer"): # NAS searched architecture
|
|
assert len(super_type.split("-")) == 2, "invalid super_type : {:}".format(
|
|
super_type
|
|
)
|
|
infer_mode = super_type.split("-")[1]
|
|
if infer_mode == "shape":
|
|
from .shape_infers import InferImagenetResNet
|
|
from .shape_infers import InferMobileNetV2
|
|
|
|
if config.arch == "resnet":
|
|
return InferImagenetResNet(
|
|
config.block_name,
|
|
config.layers,
|
|
config.xblocks,
|
|
config.xchannels,
|
|
config.deep_stem,
|
|
config.class_num,
|
|
config.zero_init_residual,
|
|
)
|
|
elif config.arch == "MobileNetV2":
|
|
return InferMobileNetV2(
|
|
config.class_num, config.xchannels, config.xblocks, config.dropout
|
|
)
|
|
else:
|
|
raise ValueError("invalid arch-mode : {:}".format(config.arch))
|
|
else:
|
|
raise ValueError("invalid infer-mode : {:}".format(infer_mode))
|
|
else:
|
|
raise ValueError("invalid super-type : {:}".format(super_type))
|
|
|
|
|
|
# Try to obtain the network by config.
|
|
def obtain_model(config, extra_path=None):
|
|
if config.dataset == "cifar":
|
|
return get_cifar_models(config, extra_path)
|
|
elif config.dataset == "imagenet":
|
|
return get_imagenet_models(config)
|
|
else:
|
|
raise ValueError("invalid dataset in the model config : {:}".format(config))
|
|
|
|
|
|
def obtain_search_model(config):
|
|
if config.dataset == "cifar":
|
|
if config.arch == "resnet":
|
|
from .shape_searchs import SearchWidthCifarResNet
|
|
from .shape_searchs import SearchDepthCifarResNet
|
|
from .shape_searchs import SearchShapeCifarResNet
|
|
|
|
if config.search_mode == "width":
|
|
return SearchWidthCifarResNet(
|
|
config.module, config.depth, config.class_num
|
|
)
|
|
elif config.search_mode == "depth":
|
|
return SearchDepthCifarResNet(
|
|
config.module, config.depth, config.class_num
|
|
)
|
|
elif config.search_mode == "shape":
|
|
return SearchShapeCifarResNet(
|
|
config.module, config.depth, config.class_num
|
|
)
|
|
else:
|
|
raise ValueError("invalid search mode : {:}".format(config.search_mode))
|
|
elif config.arch == "simres":
|
|
from .shape_searchs import SearchWidthSimResNet
|
|
|
|
if config.search_mode == "width":
|
|
return SearchWidthSimResNet(config.depth, config.class_num)
|
|
else:
|
|
raise ValueError("invalid search mode : {:}".format(config.search_mode))
|
|
else:
|
|
raise ValueError(
|
|
"invalid arch : {:} for dataset [{:}]".format(
|
|
config.arch, config.dataset
|
|
)
|
|
)
|
|
elif config.dataset == "imagenet":
|
|
from .shape_searchs import SearchShapeImagenetResNet
|
|
|
|
assert config.search_mode == "shape", "invalid search-mode : {:}".format(
|
|
config.search_mode
|
|
)
|
|
if config.arch == "resnet":
|
|
return SearchShapeImagenetResNet(
|
|
config.block_name, config.layers, config.deep_stem, config.class_num
|
|
)
|
|
else:
|
|
raise ValueError("invalid model config : {:}".format(config))
|
|
else:
|
|
raise ValueError("invalid dataset in the model config : {:}".format(config))
|
|
|
|
|
|
def load_net_from_checkpoint(checkpoint):
|
|
assert osp.isfile(checkpoint), "checkpoint {:} does not exist".format(checkpoint)
|
|
checkpoint = torch.load(checkpoint)
|
|
model_config = dict2config(checkpoint["model-config"], None)
|
|
model = obtain_model(model_config)
|
|
model.load_state_dict(checkpoint["base-model"])
|
|
return model
|