autodl-projects/xautodl/xmisc/meter_utils.py
2021-07-02 09:19:39 +00:00

164 lines
4.7 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
#####################################################
# In this python file, it contains the meter classes#
# , which may need to use PyTorch or Numpy. #
#####################################################
import abc
import torch
import torch.nn.functional as F
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0.0
self.avg = 0.0
self.sum = 0.0
self.count = 0.0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __repr__(self):
return "{name}(val={val}, avg={avg}, count={count})".format(
name=self.__class__.__name__, **self.__dict__
)
class Metric(abc.ABC):
"""The default meta metric class."""
def __init__(self):
self.reset()
def reset(self):
raise NotImplementedError
def __call__(self, predictions, targets):
raise NotImplementedError
def get_info(self):
raise NotImplementedError
def perf_str(self):
raise NotImplementedError
def __repr__(self):
return "{name}({inner})".format(
name=self.__class__.__name__, inner=self.inner_repr()
)
def inner_repr(self):
return ""
class ComposeMetric(Metric):
"""The composed metric class."""
def __init__(self, *metric_list):
self.reset()
for metric in metric_list:
self.append(metric)
def reset(self):
self._metric_list = []
def append(self, metric):
if not isinstance(metric, Metric):
raise ValueError(
"The input metric is not correct: {:}".format(type(metric))
)
self._metric_list.append(metric)
def __len__(self):
return len(self._metric_list)
def __call__(self, predictions, targets):
results = list()
for metric in self._metric_list:
results.append(metric(predictions, targets))
return results
def get_info(self):
results = dict()
for metric in self._metric_list:
for key, value in metric.get_info().items():
results[key] = value
return results
def inner_repr(self):
xlist = []
for metric in self._metric_list:
xlist.append(str(metric))
return ",".join(xlist)
class CrossEntropyMetric(Metric):
"""The metric for the cross entropy metric."""
def __init__(self, ignore_batch):
super(CrossEntropyMetric, self).__init__()
self._ignore_batch = ignore_batch
def reset(self):
self._loss = AverageMeter()
def __call__(self, predictions, targets):
if isinstance(predictions, torch.Tensor) and isinstance(targets, torch.Tensor):
batch, _ = predictions.shape() # only support 2-D tensor
max_prob_indexes = torch.argmax(predictions, dim=-1)
if self._ignore_batch:
loss = F.cross_entropy(predictions, targets, reduction="sum")
self._loss.update(loss.item(), 1)
else:
loss = F.cross_entropy(predictions, targets, reduction="mean")
self._loss.update(loss.item(), batch)
return loss
else:
raise NotImplementedError
def get_info(self):
return {"loss": self._loss.avg, "score": self._loss.avg * 100}
def perf_str(self):
return "ce-loss={:.5f}".format(self._loss.avg)
class Top1AccMetric(Metric):
"""The metric for the top-1 accuracy."""
def __init__(self, ignore_batch):
super(Top1AccMetric, self).__init__()
self._ignore_batch = ignore_batch
def reset(self):
self._accuracy = AverageMeter()
def __call__(self, predictions, targets):
if isinstance(predictions, torch.Tensor) and isinstance(targets, torch.Tensor):
batch, _ = predictions.shape() # only support 2-D tensor
max_prob_indexes = torch.argmax(predictions, dim=-1)
corrects = torch.eq(max_prob_indexes, targets)
accuracy = corrects.float().mean().float()
if self._ignore_batch:
self._accuracy.update(accuracy, 1)
else:
self._accuracy.update(accuracy, batch)
return accuracy
else:
raise NotImplementedError
def get_info(self):
return {"accuracy": self._accuracy.avg, "score": self._accuracy.avg * 100}
def perf_str(self):
return "accuracy={:.3f}%".format(self._accuracy.avg * 100)