77 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import torch.nn as nn
 | |
| from .construct_utils import drop_path
 | |
| from .head_utils      import CifarHEAD, AuxiliaryHeadCIFAR
 | |
| from .base_cells      import InferCell
 | |
| 
 | |
| 
 | |
| class NetworkCIFAR(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, N, stem_multiplier, auxiliary, genotype, num_classes):
 | |
|     super(NetworkCIFAR, self).__init__()
 | |
|     self._C               = C
 | |
|     self._layerN          = N
 | |
|     self._stem_multiplier = stem_multiplier
 | |
| 
 | |
|     C_curr = self._stem_multiplier * C
 | |
|     self.stem = CifarHEAD(C_curr)
 | |
|   
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N    
 | |
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
|     block_indexs     = [0    ] * N + [-1  ] + [1    ] * N + [-1  ] + [2    ] * N
 | |
|     block2index      = {0:[], 1:[], 2:[]}
 | |
| 
 | |
|     C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
 | |
|     reduction_prev, spatial, dims = False, 1, []
 | |
|     self.auxiliary_index = None
 | |
|     self.auxiliary_head  = None
 | |
|     self.cells = nn.ModuleList()
 | |
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
 | |
|       reduction_prev = reduction
 | |
|       self.cells.append( cell )
 | |
|       C_prev_prev, C_prev = C_prev, cell._multiplier*C_curr
 | |
|       if reduction and C_curr == C*4:
 | |
|         if auxiliary:
 | |
|           self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
 | |
|           self.auxiliary_index = index
 | |
| 
 | |
|       if reduction: spatial *= 2
 | |
|       dims.append( (C_prev, spatial) )
 | |
|       
 | |
|     self._Layer= len(self.cells)
 | |
| 
 | |
| 
 | |
|     self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|     self.classifier = nn.Linear(C_prev, num_classes)
 | |
|     self.drop_path_prob = -1
 | |
| 
 | |
|   def update_drop_path(self, drop_path_prob):
 | |
|     self.drop_path_prob = drop_path_prob
 | |
| 
 | |
|   def auxiliary_param(self):
 | |
|     if self.auxiliary_head is None: return []
 | |
|     else: return list( self.auxiliary_head.parameters() )
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.extra_repr()
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_C}, N={_layerN}, L={_Layer}, stem={_stem_multiplier}, drop-path={drop_path_prob})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     stem_feature, logits_aux = self.stem(inputs), None
 | |
|     cell_results = [stem_feature, stem_feature]
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
 | |
|       cell_results.append( cell_feature )
 | |
| 
 | |
|       if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
 | |
|         logits_aux = self.auxiliary_head( cell_results[-1] )
 | |
|     out = self.global_pooling( cell_results[-1] )
 | |
|     out = out.view(out.size(0), -1)
 | |
|     logits = self.classifier(out)
 | |
| 
 | |
|     if logits_aux is None: return out, logits
 | |
|     else                 : return out, [logits, logits_aux]
 |