190 lines
6.0 KiB
Python
190 lines
6.0 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
|
#####################################################
|
|
import math
|
|
import abc
|
|
import copy
|
|
import numpy as np
|
|
from typing import Optional
|
|
import torch
|
|
import torch.utils.data as data
|
|
|
|
|
|
class FitFunc(abc.ABC):
|
|
"""The fit function that outputs f(x) = a * x^2 + b * x + c."""
|
|
|
|
def __init__(self, freedom: int, list_of_points=None, _params=None):
|
|
self._params = dict()
|
|
for i in range(freedom):
|
|
self._params[i] = None
|
|
self._freedom = freedom
|
|
if list_of_points is not None and _params is not None:
|
|
raise ValueError("list_of_points and _params can not be set simultaneously")
|
|
if list_of_points is not None:
|
|
self.fit(list_of_points=list_of_points)
|
|
if _params is not None:
|
|
self.set(_params)
|
|
|
|
def set(self, _params):
|
|
self._params = copy.deepcopy(_params)
|
|
|
|
def check_valid(self):
|
|
for key, value in self._params.items():
|
|
if value is None:
|
|
raise ValueError("The {:} is None".format(key))
|
|
|
|
@abc.abstractmethod
|
|
def __call__(self, x):
|
|
raise NotImplementedError
|
|
|
|
def noise_call(self, x, std=0.1):
|
|
clean_y = self.__call__(x)
|
|
if isinstance(clean_y, np.ndarray):
|
|
noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape)
|
|
else:
|
|
raise ValueError("Unkonwn type: {:}".format(type(clean_y)))
|
|
return noise_y
|
|
|
|
@abc.abstractmethod
|
|
def _getitem(self, x):
|
|
raise NotImplementedError
|
|
|
|
def fit(self, **kwargs):
|
|
list_of_points = kwargs["list_of_points"]
|
|
max_iter, lr_max, verbose = (
|
|
kwargs.get("max_iter", 900),
|
|
kwargs.get("lr_max", 1.0),
|
|
kwargs.get("verbose", False),
|
|
)
|
|
with torch.no_grad():
|
|
data = torch.Tensor(list_of_points).type(torch.float32)
|
|
assert data.ndim == 2 and data.size(1) == 2, "Invalid shape : {:}".format(
|
|
data.shape
|
|
)
|
|
x, y = data[:, 0], data[:, 1]
|
|
weights = torch.nn.Parameter(torch.Tensor(self._freedom))
|
|
torch.nn.init.normal_(weights, mean=0.0, std=1.0)
|
|
optimizer = torch.optim.Adam([weights], lr=lr_max, amsgrad=True)
|
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
|
optimizer,
|
|
milestones=[
|
|
int(max_iter * 0.25),
|
|
int(max_iter * 0.5),
|
|
int(max_iter * 0.75),
|
|
],
|
|
gamma=0.1,
|
|
)
|
|
if verbose:
|
|
print("The optimizer: {:}".format(optimizer))
|
|
|
|
best_loss = None
|
|
for _iter in range(max_iter):
|
|
y_hat = self._getitem(x, weights)
|
|
loss = torch.mean(torch.abs(y - y_hat))
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
if verbose:
|
|
print(
|
|
"In the fit, loss at the {:02d}/{:02d}-th iter is {:}".format(
|
|
_iter, max_iter, loss.item()
|
|
)
|
|
)
|
|
# Update the params
|
|
if best_loss is None or best_loss > loss.item():
|
|
best_loss = loss.item()
|
|
for i in range(self._freedom):
|
|
self._params[i] = weights[i].item()
|
|
|
|
def __repr__(self):
|
|
return "{name}(freedom={freedom})".format(
|
|
name=self.__class__.__name__, freedom=freedom
|
|
)
|
|
|
|
|
|
class QuadraticFunc(FitFunc):
|
|
"""The quadratic function that outputs f(x) = a * x^2 + b * x + c."""
|
|
|
|
def __init__(self, list_of_points=None):
|
|
super(QuadraticFunc, self).__init__(3, list_of_points)
|
|
|
|
def __call__(self, x):
|
|
self.check_valid()
|
|
return self._params[0] * x * x + self._params[1] * x + self._params[2]
|
|
|
|
def _getitem(self, x, weights):
|
|
return weights[0] * x * x + weights[1] * x + weights[2]
|
|
|
|
def __repr__(self):
|
|
return "{name}({a} * x^2 + {b} * x + {c})".format(
|
|
name=self.__class__.__name__,
|
|
a=self._params[0],
|
|
b=self._params[1],
|
|
c=self._params[2],
|
|
)
|
|
|
|
|
|
class CubicFunc(FitFunc):
|
|
"""The cubic function that outputs f(x) = a * x^3 + b * x^2 + c * x + d."""
|
|
|
|
def __init__(self, list_of_points=None):
|
|
super(CubicFunc, self).__init__(4, list_of_points)
|
|
|
|
def __call__(self, x):
|
|
self.check_valid()
|
|
return (
|
|
self._params[0] * x ** 3
|
|
+ self._params[1] * x ** 2
|
|
+ self._params[2] * x
|
|
+ self._params[3]
|
|
)
|
|
|
|
def _getitem(self, x, weights):
|
|
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
|
|
|
|
def __repr__(self):
|
|
return "{name}({a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
|
|
name=self.__class__.__name__,
|
|
a=self._params[0],
|
|
b=self._params[1],
|
|
c=self._params[2],
|
|
d=self._params[3],
|
|
)
|
|
|
|
|
|
class QuarticFunc(FitFunc):
|
|
"""The quartic function that outputs f(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e."""
|
|
|
|
def __init__(self, list_of_points=None):
|
|
super(QuarticFunc, self).__init__(5, list_of_points)
|
|
|
|
def __call__(self, x):
|
|
self.check_valid()
|
|
return (
|
|
self._params[0] * x ** 4
|
|
+ self._params[1] * x ** 3
|
|
+ self._params[2] * x ** 2
|
|
+ self._params[3] * x
|
|
+ self._params[4]
|
|
)
|
|
|
|
def _getitem(self, x, weights):
|
|
return (
|
|
weights[0] * x ** 4
|
|
+ weights[1] * x ** 3
|
|
+ weights[2] * x ** 2
|
|
+ weights[3] * x
|
|
+ weights[4]
|
|
)
|
|
|
|
def __repr__(self):
|
|
return "{name}({a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
|
|
name=self.__class__.__name__,
|
|
a=self._params[0],
|
|
b=self._params[1],
|
|
c=self._params[2],
|
|
d=self._params[3],
|
|
e=self._params[3],
|
|
)
|