autodl-projects/lib/datasets/math_base_funcs.py
2021-04-26 05:16:38 -07:00

190 lines
6.0 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import math
import abc
import copy
import numpy as np
from typing import Optional
import torch
import torch.utils.data as data
class FitFunc(abc.ABC):
"""The fit function that outputs f(x) = a * x^2 + b * x + c."""
def __init__(self, freedom: int, list_of_points=None, _params=None):
self._params = dict()
for i in range(freedom):
self._params[i] = None
self._freedom = freedom
if list_of_points is not None and _params is not None:
raise ValueError("list_of_points and _params can not be set simultaneously")
if list_of_points is not None:
self.fit(list_of_points=list_of_points)
if _params is not None:
self.set(_params)
def set(self, _params):
self._params = copy.deepcopy(_params)
def check_valid(self):
for key, value in self._params.items():
if value is None:
raise ValueError("The {:} is None".format(key))
@abc.abstractmethod
def __call__(self, x):
raise NotImplementedError
def noise_call(self, x, std=0.1):
clean_y = self.__call__(x)
if isinstance(clean_y, np.ndarray):
noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape)
else:
raise ValueError("Unkonwn type: {:}".format(type(clean_y)))
return noise_y
@abc.abstractmethod
def _getitem(self, x):
raise NotImplementedError
def fit(self, **kwargs):
list_of_points = kwargs["list_of_points"]
max_iter, lr_max, verbose = (
kwargs.get("max_iter", 900),
kwargs.get("lr_max", 1.0),
kwargs.get("verbose", False),
)
with torch.no_grad():
data = torch.Tensor(list_of_points).type(torch.float32)
assert data.ndim == 2 and data.size(1) == 2, "Invalid shape : {:}".format(
data.shape
)
x, y = data[:, 0], data[:, 1]
weights = torch.nn.Parameter(torch.Tensor(self._freedom))
torch.nn.init.normal_(weights, mean=0.0, std=1.0)
optimizer = torch.optim.Adam([weights], lr=lr_max, amsgrad=True)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[
int(max_iter * 0.25),
int(max_iter * 0.5),
int(max_iter * 0.75),
],
gamma=0.1,
)
if verbose:
print("The optimizer: {:}".format(optimizer))
best_loss = None
for _iter in range(max_iter):
y_hat = self._getitem(x, weights)
loss = torch.mean(torch.abs(y - y_hat))
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
if verbose:
print(
"In the fit, loss at the {:02d}/{:02d}-th iter is {:}".format(
_iter, max_iter, loss.item()
)
)
# Update the params
if best_loss is None or best_loss > loss.item():
best_loss = loss.item()
for i in range(self._freedom):
self._params[i] = weights[i].item()
def __repr__(self):
return "{name}(freedom={freedom})".format(
name=self.__class__.__name__, freedom=freedom
)
class QuadraticFunc(FitFunc):
"""The quadratic function that outputs f(x) = a * x^2 + b * x + c."""
def __init__(self, list_of_points=None):
super(QuadraticFunc, self).__init__(3, list_of_points)
def __call__(self, x):
self.check_valid()
return self._params[0] * x * x + self._params[1] * x + self._params[2]
def _getitem(self, x, weights):
return weights[0] * x * x + weights[1] * x + weights[2]
def __repr__(self):
return "{name}({a} * x^2 + {b} * x + {c})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
c=self._params[2],
)
class CubicFunc(FitFunc):
"""The cubic function that outputs f(x) = a * x^3 + b * x^2 + c * x + d."""
def __init__(self, list_of_points=None):
super(CubicFunc, self).__init__(4, list_of_points)
def __call__(self, x):
self.check_valid()
return (
self._params[0] * x ** 3
+ self._params[1] * x ** 2
+ self._params[2] * x
+ self._params[3]
)
def _getitem(self, x, weights):
return weights[0] * x ** 3 + weights[1] * x ** 2 + weights[2] * x + weights[3]
def __repr__(self):
return "{name}({a} * x^3 + {b} * x^2 + {c} * x + {d})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
c=self._params[2],
d=self._params[3],
)
class QuarticFunc(FitFunc):
"""The quartic function that outputs f(x) = a * x^4 + b * x^3 + c * x^2 + d * x + e."""
def __init__(self, list_of_points=None):
super(QuarticFunc, self).__init__(5, list_of_points)
def __call__(self, x):
self.check_valid()
return (
self._params[0] * x ** 4
+ self._params[1] * x ** 3
+ self._params[2] * x ** 2
+ self._params[3] * x
+ self._params[4]
)
def _getitem(self, x, weights):
return (
weights[0] * x ** 4
+ weights[1] * x ** 3
+ weights[2] * x ** 2
+ weights[3] * x
+ weights[4]
)
def __repr__(self):
return "{name}({a} * x^4 + {b} * x^3 + {c} * x^2 + {d} * x + {e})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
c=self._params[2],
d=self._params[3],
e=self._params[3],
)