autodl-projects/lib/models/__init__.py
2019-09-28 20:18:18 +10:00

105 lines
4.6 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import torch
from os import path as osp
# our modules
from config_utils import dict2config
from .SharedUtils import change_key
from .clone_weights import init_from_model
def get_cifar_models(config):
from .CifarResNet import CifarResNet
from .CifarWideResNet import CifarWideResNet
super_type = getattr(config, 'super_type', 'basic')
if super_type == 'basic':
if config.arch == 'resnet':
return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual)
elif config.arch == 'wideresnet':
return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout)
else:
raise ValueError('invalid module type : {:}'.format(config.arch))
elif super_type.startswith('infer'):
from .infers import InferWidthCifarResNet
from .infers import InferDepthCifarResNet
from .infers import InferCifarResNet
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'width':
return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual)
elif infer_mode == 'depth':
return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual)
elif infer_mode == 'shape':
return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual)
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
def get_imagenet_models(config):
super_type = getattr(config, 'super_type', 'basic')
# NAS searched architecture
if super_type.startswith('infer'):
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
infer_mode = super_type.split('-')[1]
if infer_mode == 'shape':
from .infers import InferImagenetResNet
from .infers import InferMobileNetV2
if config.arch == 'resnet':
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
elif config.arch == "MobileNetV2":
return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout)
else:
raise ValueError('invalid arch-mode : {:}'.format(config.arch))
else:
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
else:
raise ValueError('invalid super-type : {:}'.format(super_type))
def obtain_model(config):
if config.dataset == 'cifar':
return get_cifar_models(config)
elif config.dataset == 'imagenet':
return get_imagenet_models(config)
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
def obtain_search_model(config):
if config.dataset == 'cifar':
if config.arch == 'resnet':
from .searchs import SearchWidthCifarResNet
from .searchs import SearchDepthCifarResNet
from .searchs import SearchShapeCifarResNet
if config.search_mode == 'width':
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'depth':
return SearchDepthCifarResNet(config.module, config.depth, config.class_num)
elif config.search_mode == 'shape':
return SearchShapeCifarResNet(config.module, config.depth, config.class_num)
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
else:
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
elif config.dataset == 'imagenet':
from .searchs import SearchShapeImagenetResNet
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
if config.arch == 'resnet':
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)
else:
raise ValueError('invalid model config : {:}'.format(config))
else:
raise ValueError('invalid dataset in the model config : {:}'.format(config))
def load_net_from_checkpoint(checkpoint):
assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint)
checkpoint = torch.load(checkpoint)
model_config = dict2config(checkpoint['model-config'], None)
model = obtain_model(model_config)
model.load_state_dict(checkpoint['base-model'])
return model