Try these tracking modes for yourself with our [Colab demo](https://colab.research.google.com/github/facebookresearch/co-tracker/blob/master/notebooks/demo.ipynb).
Ensure you have both PyTorch and TorchVision installed on your system. Follow the instructions [here](https://pytorch.org/get-started/locally/) for the installation. We strongly recommend installing both PyTorch and TorchVision with CUDA support.
## Steps to Install CoTracker and its dependencies:
Try our [Colab demo](https://colab.research.google.com/github/facebookresearch/co-tracker/blob/master/notebooks/demo.ipynb) or run a local demo with 10*10 points sampled on a grid on the first frame of a video:
To train the CoTracker as described in our paper, you first need to generate annotations for [Google Kubric](https://github.com/google-research/kubric) MOVI-f dataset. Instructions for annotation generation can be found [here](https://github.com/deepmind/tapnet).
Once you have the annotated dataset, you need to make sure you followed the steps for evaluation setup and install the training dependencies:
```
pip install pytorch_lightning==1.6.0
```
launch training on Kubric. Our model was trained using 32 GPUs, and you can adjust the parameters to best suit your hardware setup.
The majority of CoTracker is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Particle Video Revisited is licensed under the MIT license, TAP-Vid is licensed under the Apache 2.0 license.
## Citing CoTracker
If you find our repository useful, please consider giving it a star ⭐ and citing our paper in your work:
```
@article{karaev2023cotracker,
title={CoTracker: It is Better to Track Together},
author={Nikita Karaev and Ignacio Rocco and Benjamin Graham and Natalia Neverova and Andrea Vedaldi and Christian Rupprecht},