readme.md update, demo flexible save path (#83)
This commit is contained in:
parent
0f9d32869a
commit
e29e938311
@ -119,7 +119,7 @@ We strongly recommend installing both PyTorch and TorchVision with CUDA support,
|
|||||||
git clone https://github.com/facebookresearch/co-tracker
|
git clone https://github.com/facebookresearch/co-tracker
|
||||||
cd co-tracker
|
cd co-tracker
|
||||||
pip install -e .
|
pip install -e .
|
||||||
pip install matplotlib flow_vis tqdm tensorboard
|
pip install matplotlib flow_vis tqdm tensorboard imageio[ffmpeg]
|
||||||
```
|
```
|
||||||
|
|
||||||
You can manually download the CoTracker2 checkpoint from the links below and place it in the `checkpoints` folder as follows:
|
You can manually download the CoTracker2 checkpoint from the links below and place it in the `checkpoints` folder as follows:
|
||||||
@ -132,6 +132,11 @@ cd ..
|
|||||||
```
|
```
|
||||||
For old checkpoints, see [this section](#previous-version).
|
For old checkpoints, see [this section](#previous-version).
|
||||||
|
|
||||||
|
After installation, this is how you could run the model on `./assets/apple.mp4` (results will be saved to `./saved_videos/apple.mp4`):
|
||||||
|
```bash
|
||||||
|
python demo.py --checkpoint checkpoints/cotracker2.pth
|
||||||
|
```
|
||||||
|
|
||||||
## Evaluation
|
## Evaluation
|
||||||
|
|
||||||
To reproduce the results presented in the paper, download the following datasets:
|
To reproduce the results presented in the paper, download the following datasets:
|
||||||
|
3
demo.py
3
demo.py
@ -83,11 +83,12 @@ if __name__ == "__main__":
|
|||||||
print("computed")
|
print("computed")
|
||||||
|
|
||||||
# save a video with predicted tracks
|
# save a video with predicted tracks
|
||||||
seq_name = args.video_path.split("/")[-1]
|
seq_name = os.path.splitext(args.video_path.split("/")[-1])[0]
|
||||||
vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3)
|
vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3)
|
||||||
vis.visualize(
|
vis.visualize(
|
||||||
video,
|
video,
|
||||||
pred_tracks,
|
pred_tracks,
|
||||||
pred_visibility,
|
pred_visibility,
|
||||||
query_frame=0 if args.backward_tracking else args.grid_query_frame,
|
query_frame=0 if args.backward_tracking else args.grid_query_frame,
|
||||||
|
filename=seq_name,
|
||||||
)
|
)
|
||||||
|
@ -97,7 +97,7 @@ if __name__ == "__main__":
|
|||||||
print("Tracks are computed")
|
print("Tracks are computed")
|
||||||
|
|
||||||
# save a video with predicted tracks
|
# save a video with predicted tracks
|
||||||
seq_name = args.video_path.split("/")[-1]
|
seq_name = os.path.splitext(args.video_path.split("/")[-1])[0]
|
||||||
video = torch.tensor(np.stack(window_frames), device=DEFAULT_DEVICE).permute(0, 3, 1, 2)[None]
|
video = torch.tensor(np.stack(window_frames), device=DEFAULT_DEVICE).permute(0, 3, 1, 2)[None]
|
||||||
vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3)
|
vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3)
|
||||||
vis.visualize(video, pred_tracks, pred_visibility, query_frame=args.grid_query_frame)
|
vis.visualize(video, pred_tracks, pred_visibility, query_frame=args.grid_query_frame, filename=seq_name)
|
||||||
|
Loading…
Reference in New Issue
Block a user