release cotracker 2.0
This commit is contained in:
		
							
								
								
									
										51
									
								
								tests/test_bilinear_sample.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										51
									
								
								tests/test_bilinear_sample.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,51 @@ | ||||
| # Copyright (c) Meta Platforms, Inc. and affiliates. | ||||
| # All rights reserved. | ||||
|  | ||||
| # This source code is licensed under the license found in the | ||||
| # LICENSE file in the root directory of this source tree. | ||||
|  | ||||
|  | ||||
| import torch | ||||
| import unittest | ||||
|  | ||||
| from cotracker.models.core.model_utils import bilinear_sampler | ||||
|  | ||||
|  | ||||
| class TestBilinearSampler(unittest.TestCase): | ||||
|     # Sample from an image (4d) | ||||
|     def _test4d(self, align_corners): | ||||
|         H, W = 4, 5 | ||||
|         # Construct a grid to obtain indentity sampling | ||||
|         input = torch.randn(H * W).view(1, 1, H, W).float() | ||||
|         coords = torch.meshgrid(torch.arange(H), torch.arange(W)) | ||||
|         coords = torch.stack(coords[::-1], dim=-1).float()[None] | ||||
|         if not align_corners: | ||||
|             coords = coords + 0.5 | ||||
|         sampled_input = bilinear_sampler(input, coords, align_corners=align_corners) | ||||
|         torch.testing.assert_close(input, sampled_input) | ||||
|  | ||||
|     # Sample from a video (5d) | ||||
|     def _test5d(self, align_corners): | ||||
|         T, H, W = 3, 4, 5 | ||||
|         # Construct a grid to obtain indentity sampling | ||||
|         input = torch.randn(H * W).view(1, 1, H, W).float() | ||||
|         input = torch.stack([input, input + 1, input + 2], dim=2) | ||||
|         coords = torch.meshgrid(torch.arange(T), torch.arange(W), torch.arange(H)) | ||||
|         coords = torch.stack(coords, dim=-1).float().permute(0, 2, 1, 3)[None] | ||||
|  | ||||
|         if not align_corners: | ||||
|             coords = coords + 0.5 | ||||
|         sampled_input = bilinear_sampler(input, coords, align_corners=align_corners) | ||||
|         torch.testing.assert_close(input, sampled_input) | ||||
|  | ||||
|     def test4d(self): | ||||
|         self._test4d(align_corners=True) | ||||
|         self._test4d(align_corners=False) | ||||
|  | ||||
|     def test5d(self): | ||||
|         self._test5d(align_corners=True) | ||||
|         self._test5d(align_corners=False) | ||||
|  | ||||
|  | ||||
| # run the test | ||||
| unittest.main() | ||||
		Reference in New Issue
	
	Block a user