# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import cv2 import torch import argparse import numpy as np from PIL import Image from cotracker.utils.visualizer import Visualizer, read_video_from_path from cotracker.predictor import CoTrackerPredictor if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--video_path", default="./assets/apple.mp4", help="path to a video", ) parser.add_argument( "--mask_path", default="./assets/apple_mask.png", help="path to a segmentation mask", ) parser.add_argument( "--checkpoint", default="./checkpoints/cotracker_stride_4_wind_8.pth", help="cotracker model", ) parser.add_argument("--grid_size", type=int, default=0, help="Regular grid size") parser.add_argument( "--grid_query_frame", type=int, default=0, help="Compute dense and grid tracks starting from this frame ", ) parser.add_argument( "--backward_tracking", action="store_true", help="Compute tracks in both directions, not only forward", ) args = parser.parse_args() # load the input video frame by frame video = read_video_from_path(args.video_path) video = torch.from_numpy(video).permute(0, 3, 1, 2)[None].float() segm_mask = np.array(Image.open(os.path.join(args.mask_path))) segm_mask = torch.from_numpy(segm_mask)[None, None] model = CoTrackerPredictor(checkpoint=args.checkpoint) pred_tracks, pred_visibility = model( video, grid_size=args.grid_size, grid_query_frame=args.grid_query_frame, backward_tracking=args.backward_tracking, # segm_mask=segm_mask ) print("computed") # save a video with predicted tracks seq_name = args.video_path.split("/")[-1] vis = Visualizer(save_dir="./saved_videos", pad_value=120, linewidth=3) vis.visualize(video, pred_tracks, query_frame=args.grid_query_frame)