257 lines
9.9 KiB
Python
257 lines
9.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from cotracker.models.core.model_utils import smart_cat, get_points_on_a_grid
|
|
from cotracker.models.build_cotracker import build_cotracker
|
|
|
|
|
|
class CoTrackerPredictor(torch.nn.Module):
|
|
def __init__(self, checkpoint="./checkpoints/cotracker2.pth"):
|
|
super().__init__()
|
|
self.support_grid_size = 6
|
|
model = build_cotracker(checkpoint)
|
|
self.interp_shape = model.model_resolution
|
|
self.model = model
|
|
self.model.eval()
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
video, # (1, T, 3, H, W)
|
|
# input prompt types:
|
|
# - None. Dense tracks are computed in this case. You can adjust *query_frame* to compute tracks starting from a specific frame.
|
|
# *backward_tracking=True* will compute tracks in both directions.
|
|
# - queries. Queried points of shape (1, N, 3) in format (t, x, y) for frame index and pixel coordinates.
|
|
# - grid_size. Grid of N*N points from the first frame. if segm_mask is provided, then computed only for the mask.
|
|
# You can adjust *query_frame* and *backward_tracking* for the regular grid in the same way as for dense tracks.
|
|
queries: torch.Tensor = None,
|
|
segm_mask: torch.Tensor = None, # Segmentation mask of shape (B, 1, H, W)
|
|
grid_size: int = 0,
|
|
grid_query_frame: int = 0, # only for dense and regular grid tracks
|
|
backward_tracking: bool = False,
|
|
):
|
|
if queries is None and grid_size == 0:
|
|
tracks, visibilities = self._compute_dense_tracks(
|
|
video,
|
|
grid_query_frame=grid_query_frame,
|
|
backward_tracking=backward_tracking,
|
|
)
|
|
else:
|
|
tracks, visibilities = self._compute_sparse_tracks(
|
|
video,
|
|
queries,
|
|
segm_mask,
|
|
grid_size,
|
|
add_support_grid=(grid_size == 0 or segm_mask is not None),
|
|
grid_query_frame=grid_query_frame,
|
|
backward_tracking=backward_tracking,
|
|
)
|
|
|
|
return tracks, visibilities
|
|
|
|
def _compute_dense_tracks(self, video, grid_query_frame, grid_size=30, backward_tracking=False):
|
|
*_, H, W = video.shape
|
|
grid_step = W // grid_size
|
|
grid_width = W // grid_step
|
|
grid_height = H // grid_step
|
|
tracks = visibilities = None
|
|
grid_pts = torch.zeros((1, grid_width * grid_height, 3)).to(video.device)
|
|
grid_pts[0, :, 0] = grid_query_frame
|
|
for offset in range(grid_step * grid_step):
|
|
print(f"step {offset} / {grid_step * grid_step}")
|
|
ox = offset % grid_step
|
|
oy = offset // grid_step
|
|
grid_pts[0, :, 1] = torch.arange(grid_width).repeat(grid_height) * grid_step + ox
|
|
grid_pts[0, :, 2] = (
|
|
torch.arange(grid_height).repeat_interleave(grid_width) * grid_step + oy
|
|
)
|
|
tracks_step, visibilities_step = self._compute_sparse_tracks(
|
|
video=video,
|
|
queries=grid_pts,
|
|
backward_tracking=backward_tracking,
|
|
)
|
|
tracks = smart_cat(tracks, tracks_step, dim=2)
|
|
visibilities = smart_cat(visibilities, visibilities_step, dim=2)
|
|
|
|
return tracks, visibilities
|
|
|
|
def _compute_sparse_tracks(
|
|
self,
|
|
video,
|
|
queries,
|
|
segm_mask=None,
|
|
grid_size=0,
|
|
add_support_grid=False,
|
|
grid_query_frame=0,
|
|
backward_tracking=False,
|
|
):
|
|
B, T, C, H, W = video.shape
|
|
assert B == 1
|
|
|
|
video = video.reshape(B * T, C, H, W)
|
|
video = F.interpolate(video, tuple(self.interp_shape), mode="bilinear", align_corners=True)
|
|
video = video.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1])
|
|
|
|
if queries is not None:
|
|
B, N, D = queries.shape
|
|
assert D == 3
|
|
queries = queries.clone()
|
|
queries[:, :, 1:] *= queries.new_tensor(
|
|
[
|
|
(self.interp_shape[1] - 1) / (W - 1),
|
|
(self.interp_shape[0] - 1) / (H - 1),
|
|
]
|
|
)
|
|
elif grid_size > 0:
|
|
grid_pts = get_points_on_a_grid(grid_size, self.interp_shape, device=video.device)
|
|
if segm_mask is not None:
|
|
segm_mask = F.interpolate(segm_mask, tuple(self.interp_shape), mode="nearest")
|
|
point_mask = segm_mask[0, 0][
|
|
(grid_pts[0, :, 1]).round().long().cpu(),
|
|
(grid_pts[0, :, 0]).round().long().cpu(),
|
|
].bool()
|
|
grid_pts = grid_pts[:, point_mask]
|
|
|
|
queries = torch.cat(
|
|
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts],
|
|
dim=2,
|
|
)
|
|
|
|
if add_support_grid:
|
|
grid_pts = get_points_on_a_grid(
|
|
self.support_grid_size, self.interp_shape, device=video.device
|
|
)
|
|
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)
|
|
queries = torch.cat([queries, grid_pts], dim=1)
|
|
|
|
tracks, visibilities, __ = self.model.forward(video=video, queries=queries, iters=6)
|
|
|
|
if backward_tracking:
|
|
tracks, visibilities = self._compute_backward_tracks(
|
|
video, queries, tracks, visibilities
|
|
)
|
|
if add_support_grid:
|
|
queries[:, -self.support_grid_size**2 :, 0] = T - 1
|
|
if add_support_grid:
|
|
tracks = tracks[:, :, : -self.support_grid_size**2]
|
|
visibilities = visibilities[:, :, : -self.support_grid_size**2]
|
|
thr = 0.9
|
|
visibilities = visibilities > thr
|
|
|
|
# correct query-point predictions
|
|
# see https://github.com/facebookresearch/co-tracker/issues/28
|
|
|
|
# TODO: batchify
|
|
for i in range(len(queries)):
|
|
queries_t = queries[i, : tracks.size(2), 0].to(torch.int64)
|
|
arange = torch.arange(0, len(queries_t))
|
|
|
|
# overwrite the predictions with the query points
|
|
tracks[i, queries_t, arange] = queries[i, : tracks.size(2), 1:]
|
|
|
|
# correct visibilities, the query points should be visible
|
|
visibilities[i, queries_t, arange] = True
|
|
|
|
tracks *= tracks.new_tensor(
|
|
[(W - 1) / (self.interp_shape[1] - 1), (H - 1) / (self.interp_shape[0] - 1)]
|
|
)
|
|
return tracks, visibilities
|
|
|
|
def _compute_backward_tracks(self, video, queries, tracks, visibilities):
|
|
inv_video = video.flip(1).clone()
|
|
inv_queries = queries.clone()
|
|
inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1
|
|
|
|
inv_tracks, inv_visibilities, __ = self.model(video=inv_video, queries=inv_queries, iters=6)
|
|
|
|
inv_tracks = inv_tracks.flip(1)
|
|
inv_visibilities = inv_visibilities.flip(1)
|
|
|
|
mask = tracks == 0
|
|
|
|
tracks[mask] = inv_tracks[mask]
|
|
visibilities[mask[:, :, :, 0]] = inv_visibilities[mask[:, :, :, 0]]
|
|
return tracks, visibilities
|
|
|
|
|
|
class CoTrackerOnlinePredictor(torch.nn.Module):
|
|
def __init__(self, checkpoint="./checkpoints/cotracker2.pth"):
|
|
super().__init__()
|
|
self.support_grid_size = 6
|
|
model = build_cotracker(checkpoint)
|
|
self.interp_shape = model.model_resolution
|
|
self.step = model.window_len // 2
|
|
self.model = model
|
|
self.model.eval()
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
video_chunk,
|
|
is_first_step: bool = False,
|
|
queries: torch.Tensor = None,
|
|
grid_size: int = 10,
|
|
grid_query_frame: int = 0,
|
|
add_support_grid=False,
|
|
):
|
|
# Initialize online video processing and save queried points
|
|
# This needs to be done before processing *each new video*
|
|
if is_first_step:
|
|
self.model.init_video_online_processing()
|
|
if queries is not None:
|
|
B, N, D = queries.shape
|
|
assert D == 3
|
|
queries = queries.clone()
|
|
queries[:, :, 1:] *= queries.new_tensor(
|
|
[
|
|
(self.interp_shape[1] - 1) / (W - 1),
|
|
(self.interp_shape[0] - 1) / (H - 1),
|
|
]
|
|
)
|
|
elif grid_size > 0:
|
|
grid_pts = get_points_on_a_grid(
|
|
grid_size, self.interp_shape, device=video_chunk.device
|
|
)
|
|
queries = torch.cat(
|
|
[torch.ones_like(grid_pts[:, :, :1]) * grid_query_frame, grid_pts],
|
|
dim=2,
|
|
)
|
|
if add_support_grid:
|
|
grid_pts = get_points_on_a_grid(
|
|
self.support_grid_size, self.interp_shape, device=video_chunk.device
|
|
)
|
|
grid_pts = torch.cat([torch.zeros_like(grid_pts[:, :, :1]), grid_pts], dim=2)
|
|
queries = torch.cat([queries, grid_pts], dim=1)
|
|
self.queries = queries
|
|
return (None, None)
|
|
B, T, C, H, W = video_chunk.shape
|
|
video_chunk = video_chunk.reshape(B * T, C, H, W)
|
|
video_chunk = F.interpolate(
|
|
video_chunk, tuple(self.interp_shape), mode="bilinear", align_corners=True
|
|
)
|
|
video_chunk = video_chunk.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1])
|
|
|
|
tracks, visibilities, __ = self.model(
|
|
video=video_chunk,
|
|
queries=self.queries,
|
|
iters=6,
|
|
is_online=True,
|
|
)
|
|
thr = 0.9
|
|
return (
|
|
tracks
|
|
* tracks.new_tensor(
|
|
[
|
|
(W - 1) / (self.interp_shape[1] - 1),
|
|
(H - 1) / (self.interp_shape[0] - 1),
|
|
]
|
|
),
|
|
visibilities > thr,
|
|
)
|