Add aesthetic scorer reward function
This commit is contained in:
parent
8cab96dea4
commit
bae3f43f5f
48
ddpo_pytorch/aesthetic_scorer.py
Normal file
48
ddpo_pytorch/aesthetic_scorer.py
Normal file
@ -0,0 +1,48 @@
|
||||
# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
|
||||
|
||||
from importlib import resources
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from transformers import CLIPModel, CLIPProcessor
|
||||
|
||||
ASSETS_PATH = resources.files("ddpo_pytorch.assets")
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layers = nn.Sequential(
|
||||
nn.Linear(768, 1024),
|
||||
nn.Identity(),
|
||||
nn.Linear(1024, 128),
|
||||
nn.Identity(),
|
||||
nn.Linear(128, 64),
|
||||
nn.Identity(),
|
||||
nn.Linear(64, 16),
|
||||
nn.Linear(16, 1),
|
||||
)
|
||||
|
||||
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
|
||||
self.load_state_dict(state_dict)
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, embed):
|
||||
return self.layers(embed)
|
||||
|
||||
|
||||
class AestheticScorer(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
||||
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
||||
self.mlp = MLP()
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, images):
|
||||
inputs = self.processor(images=images, return_tensors="pt")
|
||||
inputs = {k: v.cuda() for k, v in inputs.items()}
|
||||
embed = self.clip.get_image_features(**inputs)
|
||||
# normalize embedding
|
||||
embed = embed / embed.norm(dim=-1, keepdim=True)
|
||||
return self.mlp(embed)
|
BIN
ddpo_pytorch/assets/sac+logos+ava1-l14-linearMSE.pth
Normal file
BIN
ddpo_pytorch/assets/sac+logos+ava1-l14-linearMSE.pth
Normal file
Binary file not shown.
@ -40,6 +40,10 @@ def imagenet_dogs():
|
||||
return from_file("imagenet_classes.txt", 151, 269)
|
||||
|
||||
|
||||
def simple_animals():
|
||||
return from_file("simple_animals.txt")
|
||||
|
||||
|
||||
def nouns_activities(nouns_file, activities_file):
|
||||
nouns = _load_lines(nouns_file)
|
||||
activities = _load_lines(activities_file)
|
||||
|
@ -8,7 +8,7 @@ def jpeg_incompressibility():
|
||||
def _fn(images, prompts, metadata):
|
||||
if isinstance(images, torch.Tensor):
|
||||
images = (images * 255).round().clamp(0, 255).to(torch.uint8).cpu().numpy()
|
||||
images = images.transpose(0, 2, 3, 1) # NCHW -> NHWC
|
||||
images = images.transpose(0, 2, 3, 1) # NCHW -> NHWC
|
||||
images = [Image.fromarray(image) for image in images]
|
||||
buffers = [io.BytesIO() for _ in images]
|
||||
for image, buffer in zip(images, buffers):
|
||||
@ -27,3 +27,17 @@ def jpeg_compressibility():
|
||||
return -rew, meta
|
||||
|
||||
return _fn
|
||||
|
||||
|
||||
def aesthetic_score():
|
||||
from ddpo_pytorch.aesthetic_scorer import AestheticScorer
|
||||
|
||||
scorer = AestheticScorer().cuda()
|
||||
|
||||
def _fn(images, prompts, metadata):
|
||||
if not isinstance(images, torch.Tensor):
|
||||
images = torch.as_tensor(images)
|
||||
scores = scorer(images)
|
||||
return scores, {}
|
||||
|
||||
return _fn
|
||||
|
@ -42,7 +42,7 @@ def main(_):
|
||||
)
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers(project_name="ddpo-pytorch", config=config.to_dict())
|
||||
logger.info(config)
|
||||
logger.info(f"\n{config}")
|
||||
|
||||
# set seed
|
||||
set_seed(config.seed, device_specific=True)
|
||||
|
Loading…
Reference in New Issue
Block a user