Update configs

This commit is contained in:
Kevin Black 2023-07-04 00:25:37 -07:00
parent ec499edf84
commit beb8c2f86d
2 changed files with 78 additions and 15 deletions

View File

@ -42,7 +42,7 @@ def get_config():
###### Sampling ######
config.sample = sample = ml_collections.ConfigDict()
# number of sampler inference steps.
sample.num_steps = 10
sample.num_steps = 50
# eta parameter for the DDIM sampler. this controls the amount of noise injected into the sampling process, with 0.0
# being fully deterministic and 1.0 being equivalent to the DDPM sampler.
sample.eta = 1.0
@ -61,7 +61,7 @@ def get_config():
# whether to use the 8bit Adam optimizer from bitsandbytes.
train.use_8bit_adam = False
# learning rate.
train.learning_rate = 1e-4
train.learning_rate = 3e-4
# Adam beta1.
train.adam_beta1 = 0.9
# Adam beta2.
@ -82,7 +82,7 @@ def get_config():
# sampling will be used during training.
train.cfg = True
# clip advantages to the range [-adv_clip_max, adv_clip_max].
train.adv_clip_max = 10
train.adv_clip_max = 5
# the PPO clip range.
train.clip_range = 1e-4
# the fraction of timesteps to train on. if set to less than 1.0, the model will be trained on a subset of the

View File

@ -5,28 +5,91 @@ import os
base = imp.load_source("base", os.path.join(os.path.dirname(__file__), "base.py"))
def get_config():
def compressibility():
config = base.get_config()
config.pretrained.model = "runwayml/stable-diffusion-v1-5"
config.pretrained.model = "CompVis/stable-diffusion-v1-4"
config.mixed_precision = "fp16"
config.allow_tf32 = True
config.use_lora = False
config.num_epochs = 100
config.use_lora = True
config.save_freq = 1
config.num_checkpoint_limit = 100000000
config.train.batch_size = 4
config.train.gradient_accumulation_steps = 2
config.train.learning_rate = 3e-5
config.train.clip_range = 1e-4
# sampling
config.sample.num_steps = 50
# the DGX machine I used had 8 GPUs, so this corresponds to 8 * 8 * 4 = 256 samples per epoch.
config.sample.batch_size = 8
config.sample.num_batches_per_epoch = 4
# this corresponds to (8 * 4) / (4 * 2) = 4 gradient updates per epoch.
config.train.batch_size = 4
config.train.gradient_accumulation_steps = 2
# prompting
config.prompt_fn = "imagenet_animals"
config.prompt_fn_kwargs = {}
# rewards
config.reward_fn = "jpeg_compressibility"
config.per_prompt_stat_tracking = {
"buffer_size": 16,
"min_count": 16,
}
return config
def incompressibility():
config = compressibility()
config.reward_fn = "jpeg_incompressibility"
return config
def aesthetic():
config = compressibility()
config.num_epochs = 200
config.reward_fn = "aesthetic_score"
# this reward is a bit harder to optimize, so I used 2 gradient updates per epoch.
config.train.gradient_accumulation_steps = 4
config.prompt_fn = "simple_animals"
config.per_prompt_stat_tracking = {
"buffer_size": 32,
"min_count": 16,
}
return config
def prompt_image_alignment():
config = compressibility()
config.num_epochs = 200
# for this experiment, I reserved 2 GPUs for LLaVA inference so only 6 could be used for DDPO. the total number of
# samples per epoch is 8 * 6 * 6 = 288.
config.sample.batch_size = 8
config.sample.num_batches_per_epoch = 6
# again, this one is harder to optimize, so I used (8 * 6) / (4 * 6) = 2 gradient updates per epoch.
config.train.batch_size = 4
config.train.gradient_accumulation_steps = 6
# prompting
config.prompt_fn = "nouns_activities"
config.prompt_fn_kwargs = {
"nouns_file": "simple_animals.txt",
"activities_file": "activities.txt",
}
# rewards
config.reward_fn = "llava_bertscore"
config.per_prompt_stat_tracking = {
"buffer_size": 32,
"min_count": 16,
}
return config
def get_config(name):
return globals()[name]()