# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py from importlib import resources import torch import torch.nn as nn import numpy as np from transformers import CLIPModel, CLIPProcessor ASSETS_PATH = resources.files("ddpo_pytorch.assets") class MLP(nn.Module): def __init__(self): super().__init__() self.layers = nn.Sequential( nn.Linear(768, 1024), nn.Dropout(0.2), nn.Linear(1024, 128), nn.Dropout(0.2), nn.Linear(128, 64), nn.Dropout(0.1), nn.Linear(64, 16), nn.Linear(16, 1), ) @torch.no_grad() def forward(self, embed): return self.layers(embed) class AestheticScorer(torch.nn.Module): def __init__(self): super().__init__() self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") self.mlp = MLP() state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth")) self.mlp.load_state_dict(state_dict) self.eval() @torch.no_grad() def __call__(self, images): inputs = self.processor(images=images, return_tensors="pt") inputs = {k: v.cuda() for k, v in inputs.items()} embed = self.clip.get_image_features(**inputs) # normalize embedding embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True) return self.mlp(embed)