ddpo-pytorch/ddpo_pytorch/aesthetic_scorer.py
2023-06-28 10:42:30 -07:00

52 lines
1.7 KiB
Python

# Based on https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/fe88a163f4661b4ddabba0751ff645e2e620746e/simple_inference.py
from importlib import resources
import torch
import torch.nn as nn
import numpy as np
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
ASSETS_PATH = resources.files("ddpo_pytorch.assets")
class MLP(nn.Module):
def __init__(self):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(768, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
@torch.no_grad()
def forward(self, embed):
return self.layers(embed)
class AestheticScorer(torch.nn.Module):
def __init__(self):
super().__init__()
self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
self.mlp = MLP()
state_dict = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"))
self.mlp.load_state_dict(state_dict)
self.eval()
@torch.no_grad()
def __call__(self, images):
assert isinstance(images, list)
assert isinstance(images[0], Image.Image)
inputs = self.processor(images=images, return_tensors="pt")
inputs = {k: v.cuda() for k, v in inputs.items()}
embed = self.clip.get_image_features(**inputs)
# normalize embedding
embed = embed / torch.linalg.vector_norm(embed, dim=-1, keepdim=True)
return self.mlp(embed)