347 lines
10 KiB
Plaintext
347 lines
10 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Network Helper\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torch.nn as nn\n",
|
||
"import inspect\n",
|
||
"import torch\n",
|
||
"import math\n",
|
||
"from einops import rearrange\n",
|
||
"from torch import einsum"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def exists(x):\n",
|
||
" return x is not None\n",
|
||
"\n",
|
||
"def default(val, d):\n",
|
||
" if exists(val):\n",
|
||
" return val\n",
|
||
" return d() if inspect.isfunction(d) else d\n",
|
||
"\n",
|
||
"class Residual(nn.Module):\n",
|
||
" def __init__(self, fn):\n",
|
||
" super().__init__()\n",
|
||
" self.fn = fn\n",
|
||
"\n",
|
||
" def forward(self, x, *args, **kwargs):\n",
|
||
" return self.fn(x, *args, **kwargs) + x\n",
|
||
"\n",
|
||
"# 上采样(反卷积)\n",
|
||
"def Upsample(dim):\n",
|
||
" return nn.ConvTranspose2d(dim, dim, 4, 2, 1)\n",
|
||
"\n",
|
||
"def Downsample(dim):\n",
|
||
" return nn.Conv2d(dim, dim, 4, 2 ,1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Positional embedding\n",
|
||
"\n",
|
||
"目的是让网络知道\n",
|
||
"当前是哪一个step. \n",
|
||
"ddpm采用正弦位置编码\n",
|
||
"\n",
|
||
"输入是shape为(batch_size, 1)的tensor, batch中每一个sample所处的t,并且将这个tensor转换为shape为(batch_size, dim)的tensor.\n",
|
||
"这个tensor会被加到每一个残差模块中.\n",
|
||
"\n",
|
||
"总之就是将$t$编码为embedding,和原本的输入一起进入网络,让网络“知道”当前的输入属于哪个step"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class SinusolidalPositionEmbedding(nn.Module):\n",
|
||
" def __init__(self, dim):\n",
|
||
" super().__init__()\n",
|
||
" self.dim = dim\n",
|
||
"\n",
|
||
" def forward(self, time):\n",
|
||
" device = time.device\n",
|
||
" half_dim = self.dim // 2\n",
|
||
" embeddings = math.log(10000) / (half_dim - 1)\n",
|
||
" embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings)\n",
|
||
" embeddings = time[:, :, None] * embeddings[None, None, :]\n",
|
||
" embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)\n",
|
||
" return embeddings\n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## ResNet/ConvNeXT block"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Block在init的时候创建了一个卷积层,一个归一化层,一个激活函数\n",
|
||
"# 前向的过程包括,首先卷积,再归一化,最后激活\n",
|
||
"class Block(nn.Module):\n",
|
||
" def __init__(self, dim, dim_out, groups = 8):\n",
|
||
" super().__init__()\n",
|
||
" self.proj = nn.Conv2d(dim, dim_out, 3, padding=1) # 提取特征\n",
|
||
" self.norm = nn.GroupNorm(groups, dim_out) # 归一化, 使得网络训练更快速,调整和缩放神经网络中间层来实现梯度的稳定\n",
|
||
" self.act = nn.SiLU()\n",
|
||
" \n",
|
||
" def forward(self, x, scale_shift = None):\n",
|
||
" x = self.proj(x)\n",
|
||
" x = self.norm(x)\n",
|
||
"\n",
|
||
" if exists(scale_shift):\n",
|
||
" scale, shift = scale_shift\n",
|
||
" x = x * (scale + 1) + shift\n",
|
||
"\n",
|
||
" x = self.act(x)\n",
|
||
" return x\n",
|
||
"\n",
|
||
"class ResnetBlock(nn.Module):\n",
|
||
" def __init__(self, dim, dim_out, *, time_emb_dim = None, groups = 8):\n",
|
||
" super().__init__()\n",
|
||
" self.mlp = (\n",
|
||
" nn.Sequential(\n",
|
||
" nn.SiLU(), \n",
|
||
" nn.Linear(time_emb_dim, dim_out)\n",
|
||
" )\n",
|
||
" if exists(time_emb_dim) else None\n",
|
||
" )\n",
|
||
" # 第一个块的作用是,将输入的特征图的维度从dim变成dim_out\n",
|
||
" self.block1 = Block(dim, dim_out, groups=groups)\n",
|
||
" self.block2 = Block(dim_out, dim_out=dim_out, groups=groups)\n",
|
||
" self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()\n",
|
||
" \n",
|
||
" def forward(self, x, time_emb = None):\n",
|
||
" h = self.block1(x)\n",
|
||
"\n",
|
||
" if exists(self.mlp) and exists(time_emb):\n",
|
||
" # 时间序列送到多层感知机里\n",
|
||
" time_emb = self.mlp(time_emb)\n",
|
||
" # 为了让时间序列的维度和特征图的维度一致,所以需要增加一个维度\n",
|
||
" h = rearrange(time_emb, 'b n -> b () n') + h\n",
|
||
"\n",
|
||
" h = self.block2(h)\n",
|
||
" return h + self.res_conv(x)\n",
|
||
" \n",
|
||
" "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class ConvNextBlock(nn.Module):\n",
|
||
" def __init__(self, dim, dim_out, *, time_emb_dim = None, mult = 2, norm = True):\n",
|
||
" super().__init()\n",
|
||
" self.mlp = (\n",
|
||
" nn.Sequential(\n",
|
||
" nn.GELU(),\n",
|
||
" nn.Linear(time_emb_dim, dim)\n",
|
||
" )\n",
|
||
" if exists(time_emb_dim) else None \n",
|
||
" )\n",
|
||
"\n",
|
||
" self.ds_conv = nn.Conv2d(dim, dim, 7, padding=3, groups=dim)\n",
|
||
"\n",
|
||
" self.net = nn.Sequential(\n",
|
||
" nn.GroupNorm(1, dim) if norm else nn.Identity(),\n",
|
||
" nn.Conv2d(dim, dim_out * mult, 3, padding=1),\n",
|
||
" nn.GELU(),\n",
|
||
" nn.GroupNorm(1, dim_out * mult),\n",
|
||
" nn.Conv2d(dim_out * mult, dim_out, 3, padding=1),\n",
|
||
" )\n",
|
||
" self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity()\n",
|
||
"\n",
|
||
" def forward(self, x, time_emb=None):\n",
|
||
" h = self.ds_conv(x)\n",
|
||
"\n",
|
||
" if exists(self.mlp) and exists(time_emb):\n",
|
||
" condition = self.mlp(time_emb)\n",
|
||
" h = rearrange(time_emb, 'b c -> b c 1 1') + h\n",
|
||
" h = self.net(h)\n",
|
||
" return h + self.res_conv(x)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Attention module"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class Attention(nn.Module):\n",
|
||
" def __init__(self, dim, heads=4, dim_head=32):\n",
|
||
" super().__init__()\n",
|
||
" self.scale = dim_head ** -0.5\n",
|
||
" self.heads = heads\n",
|
||
" hidden_dim = dim_head * dim # 计算隐藏层的维度\n",
|
||
" self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) # 通过卷积层将输入的特征图的维度变成hidden_dim * 3\n",
|
||
" self.to_out = nn.Conv2d(hidden_dim, dim, 1)\n",
|
||
" \n",
|
||
" def forward(self, x):\n",
|
||
" b, c, h ,w = x.shape\n",
|
||
" qkv = self.to_qkv(x).chunk(3, dim=1)\n",
|
||
" q, k, v= map(\n",
|
||
" lambda t: rearrange(t, \"b (h c) x y -> b h c (x y)\", h=self.heads),\n",
|
||
" qkv\n",
|
||
" )\n",
|
||
" q = q * self.scale\n",
|
||
"\n",
|
||
" sim = einsum(\"b h d i, b h d j -> b h i j\", q, k)\n",
|
||
" sim = sim - sim.amax(dim=-1, keepdim=True).detach()\n",
|
||
" attn = sim.softmax(dim=-1)\n",
|
||
"\n",
|
||
" out = einsum(\"b h i j, b h d j -> b h i d\", attn, v)\n",
|
||
" out = rearrange(out, \"b h (x y) d -> b (h d) x y\", x=h, y=w)\n",
|
||
" return self.to_out(out)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class LinearAttention(nn.Module):\n",
|
||
" def __init__(self, dim, heads=4, dim_head=32):\n",
|
||
" super().__init__()\n",
|
||
" self.scale = dim_head ** -0.5\n",
|
||
" self.heads = heads\n",
|
||
" hidden_dim = dim_head * heads\n",
|
||
" self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)\n",
|
||
" self.to_out = nn.Sequential(nn.Conv2d(hidden_dim, dim, 1),\n",
|
||
" nn.GroupNorm(1, dim))\n",
|
||
"\n",
|
||
" def forward(self, x):\n",
|
||
" b, c, h, w = x.shape\n",
|
||
" qkv = self.to_qkv(x).chunk(3, dim=1)\n",
|
||
" q, k, v = map(\n",
|
||
" lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h=self.heads), \n",
|
||
" qkv\n",
|
||
" )\n",
|
||
"\n",
|
||
" q = q.softmax(dim=-2)\n",
|
||
" k = k.softmax(dim=-1)\n",
|
||
"\n",
|
||
" q = q * self.scale\n",
|
||
" context = torch.einsum(\"b h d n, b h e n -> b h d e\", k, v)\n",
|
||
"\n",
|
||
" out = torch.einsum(\"b h d e, b h d n -> b h e n\", context, q)\n",
|
||
" out = rearrange(out, \"b h c (x y) -> b (h c) x y\", h=self.heads, x=h, y=w)\n",
|
||
" return self.to_out(out)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Group Normalization"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class PreNorm(nn.Module):\n",
|
||
" def __init__(self, dim, fn):\n",
|
||
" super().__init__()\n",
|
||
" self.fn = fn\n",
|
||
" self.norm = nn.GroupNorm(1, dim)\n",
|
||
" \n",
|
||
" def forward(self, x):\n",
|
||
" x = self.norm(x)\n",
|
||
" return self.fn(x)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Conditional U-Net"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"class Unet(nn.Module):\n",
|
||
" "
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "arch2vec39",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.13"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 2
|
||
}
|