diffusionNAG/NAS-Bench-201/sampling.py

579 lines
23 KiB
Python
Raw Permalink Normal View History

2024-03-15 15:38:51 +01:00
"""Various sampling methods."""
import functools
import torch
import numpy as np
import abc
from tqdm import trange
import sde_lib
from models import utils as mutils
from datasets_nas import MetaTestDataset
from all_path import DATA_PATH
_CORRECTORS = {}
_PREDICTORS = {}
def register_predictor(cls=None, *, name=None):
"""A decorator for registering predictor classes."""
def _register(cls):
if name is None:
local_name = cls.__name__
else:
local_name = name
if local_name in _PREDICTORS:
raise ValueError(f'Already registered predictor with name: {local_name}')
_PREDICTORS[local_name] = cls
return cls
if cls is None:
return _register
else:
return _register(cls)
def register_corrector(cls=None, *, name=None):
"""A decorator for registering corrector classes."""
def _register(cls):
if name is None:
local_name = cls.__name__
else:
local_name = name
if local_name in _CORRECTORS:
raise ValueError(f'Already registered corrector with name: {local_name}')
_CORRECTORS[local_name] = cls
return cls
if cls is None:
return _register
else:
return _register(cls)
def get_predictor(name):
return _PREDICTORS[name]
def get_corrector(name):
return _CORRECTORS[name]
def get_sampling_fn(
config,
sde,
shape,
inverse_scaler,
eps,
conditional=False,
data_name='cifar10',
num_sample=20):
"""Create a sampling function.
Args:
config: A `ml_collections.ConfigDict` object that contains all configuration information.
sde: A `sde_lib.SDE` object that represents the forward SDE.
shape: A sequence of integers representing the expected shape of a single sample.
inverse_scaler: The inverse data normalizer function.
eps: A `float` number. The reverse-time SDE is only integrated to `eps` for numerical stability.
conditional: If `True`, the sampling function is conditional
data_name: A `str` name of the dataset.
num_sample: An `int` number of samples for each class of the dataset.
Returns:
A function that takes random states and a replicated training state and outputs samples with the
trailing dimensions matching `shape`.
"""
sampler_name = config.sampling.method
# Predictor-Corrector sampling. Predictor-only and Corrector-only samplers are special cases.
if sampler_name.lower() == 'pc':
predictor = get_predictor(config.sampling.predictor.lower())
corrector = get_corrector(config.sampling.corrector.lower())
if not conditional:
print('>>> Get pc_sampler...')
sampling_fn = get_pc_sampler_nas(sde=sde,
shape=shape,
predictor=predictor,
corrector=corrector,
inverse_scaler=inverse_scaler,
snr=config.sampling.snr,
n_steps=config.sampling.n_steps_each,
probability_flow=config.sampling.probability_flow,
continuous=config.training.continuous,
denoise=config.sampling.noise_removal,
eps=eps,
device=config.device)
else:
print('>>> Get pc_conditional_sampler...')
sampling_fn = get_pc_conditional_sampler_meta_nas(sde=sde,
shape=shape,
predictor=predictor,
corrector=corrector,
inverse_scaler=inverse_scaler,
snr=config.sampling.snr,
n_steps=config.sampling.n_steps_each,
probability_flow=config.sampling.probability_flow,
continuous=config.training.continuous,
denoise=config.sampling.noise_removal,
eps=eps,
device=config.device,
regress=config.sampling.regress,
labels=config.sampling.labels,
data_name=data_name,
num_sample=num_sample)
else:
raise NotImplementedError(f"Sampler name {sampler_name} unknown.")
return sampling_fn
class Predictor(abc.ABC):
"""The abstract class for a predictor algorithm."""
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__()
self.sde = sde
# Compute the reverse SDE/ODE
if isinstance(sde, tuple):
self.rsde = (sde[0].reverse(score_fn, probability_flow), sde[1].reverse(score_fn, probability_flow))
else:
self.rsde = sde.reverse(score_fn, probability_flow)
self.score_fn = score_fn
@abc.abstractmethod
def update_fn(self, x, t, *args, **kwargs):
"""One update of the predictor.
Args:
x: A PyTorch tensor representing the current state.
t: A PyTorch tensor representing the current time step.
Returns:
x: A PyTorch tensor of the next state.
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
"""
pass
class Corrector(abc.ABC):
"""The abstract class for a corrector algorithm."""
def __init__(self, sde, score_fn, snr, n_steps):
super().__init__()
self.sde = sde
self.score_fn = score_fn
self.snr = snr
self.n_steps = n_steps
@abc.abstractmethod
def update_fn(self, x, t, *args, **kwargs):
"""One update of the corrector.
Args:
x: A PyTorch tensor representing the current state.
t: A PyTorch tensor representing the current time step.
Returns:
x: A PyTorch tensor of the next state.
x_mean: A PyTorch tensor. The next state without random noise. Useful for denoising.
"""
pass
@register_predictor(name='euler_maruyama')
class EulerMaruyamaPredictor(Predictor):
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__(sde, score_fn, probability_flow)
def update_fn(self, x, t, *args, **kwargs):
dt = -1. / self.rsde.N
z = torch.randn_like(x)
drift, diffusion = self.rsde.sde(x, t, *args, **kwargs)
x_mean = x + drift * dt
x = x_mean + diffusion[:, None, None] * np.sqrt(-dt) * z
return x, x_mean
@register_predictor(name='reverse_diffusion')
class ReverseDiffusionPredictor(Predictor):
def __init__(self, sde, score_fn, probability_flow=False):
super().__init__(sde, score_fn, probability_flow)
def update_fn(self, x, t, *args, **kwargs):
f, G = self.rsde.discretize(x, t, *args, **kwargs)
z = torch.randn_like(x)
x_mean = x - f
x = x_mean + G[:, None, None] * z
return x, x_mean
@register_predictor(name='none')
class NonePredictor(Predictor):
"""An empty predictor that does nothing."""
def __init__(self, sde, score_fn, probability_flow=False):
pass
def update_fn(self, x, t, *args, **kwargs):
return x, x
@register_corrector(name='langevin')
class LangevinCorrector(Corrector):
def __init__(self, sde, score_fn, snr, n_steps):
super().__init__(sde, score_fn, snr, n_steps)
def update_fn(self, x, t, *args, **kwargs):
sde = self.sde
score_fn = self.score_fn
n_steps = self.n_steps
target_snr = self.snr
if isinstance(sde, sde_lib.VPSDE) or isinstance(sde, sde_lib.subVPSDE):
timestep = (t * (sde.N - 1) / sde.T).long()
# Note: it seems that subVPSDE doesn't set alphas
alpha = sde.alphas.to(t.device)[timestep]
else:
alpha = torch.ones_like(t)
for i in range(n_steps):
grad = score_fn(x, t, *args, **kwargs)
noise = torch.randn_like(x)
grad_norm = torch.norm(grad.reshape(grad.shape[0], -1), dim=-1).mean()
noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean()
step_size = (target_snr * noise_norm / grad_norm) ** 2 * 2 * alpha
x_mean = x + step_size[:, None, None] * grad
x = x_mean + torch.sqrt(step_size * 2)[:, None, None] * noise
return x, x_mean
@register_corrector(name='none')
class NoneCorrector(Corrector):
"""An empty corrector that does nothing."""
def __init__(self, sde, score_fn, snr, n_steps):
pass
def update_fn(self, x, t, *args, **kwargs):
return x, x
def shared_predictor_update_fn(x, t, sde, model,
predictor, probability_flow, continuous, *args, **kwargs):
"""A wrapper that configures and returns the update function of predictors."""
score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous)
if predictor is None:
# Corrector-only sampler
predictor_obj = NonePredictor(sde, score_fn, probability_flow)
else:
predictor_obj = predictor(sde, score_fn, probability_flow)
return predictor_obj.update_fn(x, t, *args, **kwargs)
def shared_corrector_update_fn(x, t, sde, model,
corrector, continuous, snr, n_steps, *args, **kwargs):
"""A wrapper that configures and returns the update function of correctors."""
score_fn = mutils.get_score_fn(sde, model, train=False, continuous=continuous)
if corrector is None:
# Predictor-only sampler
corrector_obj = NoneCorrector(sde, score_fn, snr, n_steps)
else:
corrector_obj = corrector(sde, score_fn, snr, n_steps)
return corrector_obj.update_fn(x, t, *args, **kwargs)
def get_pc_sampler(sde,
shape,
predictor,
corrector,
inverse_scaler,
snr,
n_steps=1,
probability_flow=False,
continuous=False,
denoise=True,
eps=1e-3,
device='cuda'):
"""Create a Predictor-Corrector (PC) sampler.
Args:
sde: An `sde_lib.SDE` object representing the forward SDE.
shape: A sequence of integers. The expected shape of a single sample.
predictor: A subclass of `sampling.Predictor` representing the predictor algorithm.
corrector: A subclass of `sampling.Corrector` representing the corrector algorithm.
inverse_scaler: The inverse data normalizer.
snr: A `float` number. The signal-to-noise ratio for configuring correctors.
n_steps: An integer. The number of corrector steps per predictor update.
probability_flow: If `True`, solve the reverse-time probability flow ODE when running the predictor.
continuous: `True` indicates that the score model was continuously trained.
denoise: If `True`, add one-step denoising to the final samples.
eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues.
device: PyTorch device.
Returns:
A sampling function that returns samples and the number of function evaluations during sampling.
"""
# Create predictor & corrector update functions
predictor_update_fn = functools.partial(shared_predictor_update_fn,
sde=sde,
predictor=predictor,
probability_flow=probability_flow,
continuous=continuous)
corrector_update_fn = functools.partial(shared_corrector_update_fn,
sde=sde,
corrector=corrector,
continuous=continuous,
snr=snr,
n_steps=n_steps)
def pc_sampler(model, n_nodes_pmf):
"""The PC sampler function.
Args:
model: A score model.
n_nodes_pmf: Probability mass function of graph nodes.
Returns:
Samples, number of function evaluations.
"""
with torch.no_grad():
# Initial sample
x = sde.prior_sampling(shape).to(device)
timesteps = torch.linspace(sde.T, eps, sde.N, device=device)
# Sample the number of nodes
n_nodes = torch.multinomial(n_nodes_pmf, shape[0], replacement=True)
mask = torch.zeros((shape[0], shape[-1]), device=device)
for i in range(shape[0]):
mask[i][:n_nodes[i]] = 1.
mask = (mask[:, None, :] * mask[:, :, None]).unsqueeze(1)
mask = torch.tril(mask, -1)
mask = mask + mask.transpose(-1, -2)
x = x * mask
for i in range(sde.N):
t = timesteps[i]
vec_t = torch.ones(shape[0], device=t.device) * t
x, x_mean = corrector_update_fn(x, vec_t, model=model, mask=mask)
x = x * mask
x, x_mean = predictor_update_fn(x, vec_t, model=model, mask=mask)
x = x * mask
return inverse_scaler(x_mean if denoise else x) * mask, sde.N * (n_steps + 1), n_nodes
return pc_sampler
def get_pc_sampler_nas(sde,
shape,
predictor,
corrector,
inverse_scaler,
snr,
n_steps=1,
probability_flow=False,
continuous=False,
denoise=True,
eps=1e-3,
device='cuda'):
"""Create a Predictor-Corrector (PC) sampler.
Args:
sde: An `sde_lib.SDE` object representing the forward SDE.
shape: A sequence of integers. The expected shape of a single sample.
predictor: A subclass of `sampling.Predictor` representing the predictor algorithm.
corrector: A subclass of `sampling.Corrector` representing the corrector algorithm.
inverse_scaler: The inverse data normalizer.
snr: A `float` number. The signal-to-noise ratio for configuring correctors.
n_steps: An integer. The number of corrector steps per predictor update.
probability_flow: If `True`, solve the reverse-time probability flow ODE when running the predictor.
continuous: `True` indicates that the score model was continuously trained.
denoise: If `True`, add one-step denoising to the final samples.
eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues.
device: PyTorch device.
Returns:
A sampling function that returns samples and the number of function evaluations during sampling.
"""
# Create predictor & corrector update functions
predictor_update_fn = functools.partial(shared_predictor_update_fn,
sde=sde,
predictor=predictor,
probability_flow=probability_flow,
continuous=continuous)
corrector_update_fn = functools.partial(shared_corrector_update_fn,
sde=sde,
corrector=corrector,
continuous=continuous,
snr=snr,
n_steps=n_steps)
def pc_sampler(model, mask):
"""The PC sampler function.
Args:
model: A score model.
n_nodes_pmf: Probability mass function of graph nodes.
Returns:
Samples, number of function evaluations.
"""
with torch.no_grad():
# Initial sample
x = sde.prior_sampling(shape).to(device)
timesteps = torch.linspace(sde.T, eps, sde.N, device=device)
mask = mask[0].unsqueeze(0).repeat(x.size(0), 1, 1)
for i in trange(sde.N, desc='[PC sampling]', position=1, leave=False):
t = timesteps[i]
vec_t = torch.ones(shape[0], device=t.device) * t
x, x_mean = corrector_update_fn(x, vec_t, model=model, maskX=mask)
x, x_mean = predictor_update_fn(x, vec_t, model=model, maskX=mask)
return inverse_scaler(x_mean if denoise else x), sde.N * (n_steps + 1), None
return pc_sampler
def get_pc_conditional_sampler_meta_nas(
sde,
shape,
predictor,
corrector,
inverse_scaler,
snr,
n_steps=1,
probability_flow=False,
continuous=False,
denoise=True,
eps=1e-5,
device='cuda',
regress=True,
labels='max',
data_name='cifar10',
num_sample=20):
"""Class-conditional sampling with Predictor-Corrector (PC) samplers.
Args:
sde: An `sde_lib.SDE` object that represents the forward SDE.
score_model: A `torch.nn.Module` object that represents the architecture of the score-based model.
classifier: A `torch.nn.Module` object that represents the architecture of the noise-dependent classifier.
# classifier_params: A dictionary that contains the weights of the classifier.
shape: A sequence of integers. The expected shape of a single sample.
predictor: A subclass of `sampling.predictor` that represents a predictor algorithm.
corrector: A subclass of `sampling.corrector` that represents a corrector algorithm.
inverse_scaler: The inverse data normalizer.
snr: A `float` number. The signal-to-noise ratio for correctors.
n_steps: An integer. The number of corrector steps per update of the predictor.
probability_flow: If `True`, solve the probability flow ODE for sampling with the predictor.
continuous: `True` indicates the score-based model was trained with continuous time.
denoise: If `True`, add one-step denoising to final samples.
eps: A `float` number. The SDE/ODE will be integrated to `eps` to avoid numerical issues.
Returns: A pmapped class-conditional image sampler.
"""
# --------- Meta-NAS ---------- #
test_dataset = MetaTestDataset(
data_path=DATA_PATH,
data_name=data_name,
num_sample=num_sample)
def conditional_predictor_update_fn(score_model, classifier, x, t, labels, maskX, classifier_scale, *args, **kwargs):
"""The predictor update function for class-conditional sampling."""
score_fn = mutils.get_score_fn(sde, score_model, train=False, continuous=continuous)
classifier_grad_fn = mutils.get_classifier_grad_fn(sde, classifier, train=False, continuous=continuous,
regress=regress, labels=labels)
def total_grad_fn(x, t, *args, **kwargs):
score = score_fn(x, t, maskX)
classifier_grad = classifier_grad_fn(x, t, maskX, *args, **kwargs)
return score + classifier_scale * classifier_grad
if predictor is None:
predictor_obj = NonePredictor(sde, total_grad_fn, probability_flow)
else:
predictor_obj = predictor(sde, total_grad_fn, probability_flow)
return predictor_obj.update_fn(x, t, *args, **kwargs)
def conditional_corrector_update_fn(score_model, classifier, x, t, labels, maskX, classifier_scale, *args, **kwargs):
"""The corrector update function for class-conditional sampling."""
score_fn = mutils.get_score_fn(sde, score_model, train=False, continuous=continuous)
classifier_grad_fn = mutils.get_classifier_grad_fn(sde, classifier, train=False, continuous=continuous,
regress=regress, labels=labels)
def total_grad_fn(x, t, *args, **kwargs):
score = score_fn(x, t, maskX)
classifier_grad = classifier_grad_fn(x, t, maskX, *args, **kwargs)
return score + classifier_scale * classifier_grad
if corrector is None:
corrector_obj = NoneCorrector(sde, total_grad_fn, snr, n_steps)
else:
corrector_obj = corrector(sde, total_grad_fn, snr, n_steps)
return corrector_obj.update_fn(x, t, *args, **kwargs)
def pc_conditional_sampler(
score_model,
mask,
classifier,
classifier_scale=None,
task=None):
"""Generate class-conditional samples with Predictor-Corrector (PC) samplers.
Args:
score_model: A `torch.nn.Module` object that represents the training state
of the score-based model.
labels: A JAX array of integers that represent the target label of each sample.
Returns:
Class-conditional samples.
"""
# to accerlerating sampling
with torch.no_grad():
if task is None:
task = test_dataset[0]
task = task.repeat(shape[0], 1, 1)
task = task.to(device)
else:
task = task.repeat(shape[0], 1, 1)
task = task.to(device)
classifier.sample_state = True
classifier.D_mu = None
# initial sample
x = sde.prior_sampling(shape).to(device)
timesteps = torch.linspace(sde.T, eps, sde.N, device=device)
if len(mask.shape) == 3: mask = mask[0]
mask = mask.unsqueeze(0).repeat(x.size(0), 1, 1) # adj
for i in trange(sde.N, desc='[PC conditional sampling]', position=1, leave=False):
t = timesteps[i]
vec_t = torch.ones(shape[0], device=t.device) * t
x, x_mean = conditional_corrector_update_fn(score_model, classifier, x, vec_t, labels=labels, maskX=mask, task=task, classifier_scale=classifier_scale)
x, x_mean = conditional_predictor_update_fn(score_model, classifier, x, vec_t, labels=labels, maskX=mask, task=task, classifier_scale=classifier_scale)
classifier.sample_state = False
return inverse_scaler(x_mean if denoise else x)
return pc_conditional_sampler