diffusionNAG/MobileNetV3/logger.py

180 lines
5.5 KiB
Python
Raw Normal View History

2024-03-15 15:38:51 +01:00
import os
import wandb
import torch
import numpy as np
class Logger:
def __init__(
self,
exp_name,
log_dir=None,
exp_suffix="",
write_textfile=True,
use_wandb=False,
wandb_project_name=None,
entity='hysh',
config=None
):
self.log_dir = log_dir
self.write_textfile = write_textfile
self.use_wandb = use_wandb
self.logs_for_save = {}
self.logs = {}
if self.write_textfile:
self.f = open(os.path.join(log_dir, 'logs.txt'), 'w')
if self.use_wandb:
exp_suffix = "_".join(exp_suffix.split("/")[:-1])
wandb.init(
config=config if config is not None else wandb.config,
entity=entity,
project=wandb_project_name,
name=exp_name + "_" + exp_suffix,
group=exp_name,
reinit=True)
def write_str(self, log_str):
self.f.write(log_str+'\n')
self.f.flush()
def update_config(self, v, is_args=False):
if is_args:
self.logs_for_save.update({'args': v})
else:
self.logs_for_save.update(v)
if self.use_wandb:
wandb.config.update(v, allow_val_change=True)
def write_log_nohead(self, element, step):
log_str = f"{step} | "
log_dict = {}
for key, val in element.items():
if not key in self.logs_for_save:
self.logs_for_save[key] = []
self.logs_for_save[key].append(val)
log_str += f'{key} {val} | '
log_dict[f'{key}'] = val
if self.write_textfile:
self.f.write(log_str+'\n')
self.f.flush()
if self.use_wandb:
wandb.log(log_dict, step=step)
def write_log(self, element, step, return_log_dict=False):
log_str = f"{step} | "
log_dict = {}
for head, keys in element.items():
for k in keys:
if k in self.logs:
v = self.logs[k].avg
if not k in self.logs_for_save:
self.logs_for_save[k] = []
self.logs_for_save[k].append(v)
log_str += f'{k} {v}| '
log_dict[f'{head}/{k}'] = v
if self.write_textfile:
self.f.write(log_str+'\n')
self.f.flush()
if return_log_dict:
return log_dict
if self.use_wandb:
wandb.log(log_dict, step=step)
def log_sample(self, sample_x):
wandb.log({"sampled_x": [wandb.Image(x.unsqueeze(-1).cpu().numpy()) for x in sample_x]})
def log_valid_sample_prop(self, arch_metric, x_axis, y_axis):
assert x_axis in ['test_acc', 'flops', 'params', 'latency']
assert y_axis in ['test_acc', 'flops', 'params', 'latency']
data = [[x, y] for (x, y) in zip(arch_metric[2][f'{x_axis}_list'], arch_metric[2][f'{y_axis}_list'])]
table = wandb.Table(data=data, columns = [x_axis, y_axis])
wandb.log({f"valid_sample ({x_axis}-{y_axis})" : wandb.plot.scatter(table, x_axis, y_axis)})
def save_log(self, name=None):
name = 'logs.pt' if name is None else name
torch.save(self.logs_for_save, os.path.join(self.log_dir, name))
def update(self, key, v, n=1):
if not key in self.logs:
self.logs[key] = AverageMeter()
self.logs[key].update(v, n)
def reset(self, keys=None, except_keys=[]):
if keys is not None:
if isinstance(keys, list):
for key in keys:
self.logs[key] = AverageMeter()
else:
self.logs[keys] = AverageMeter()
else:
for key in self.logs.keys():
if not key in except_keys:
self.logs[key] = AverageMeter()
def avg(self, keys=None, except_keys=[]):
if keys is not None:
if isinstance(keys, list):
return {key: self.logs[key].avg for key in keys if key in self.logs.keys()}
else:
return self.logs[keys].avg
else:
avg_dict = {}
for key in self.logs.keys():
if not key in except_keys:
avg_dict[key] = self.logs[key].avg
return avg_dict
class AverageMeter(object):
"""
Computes and stores the average and current value
Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_metrics(g_embeds, x_embeds, logit_scale, prefix='train'):
metrics = {}
logits_per_g = (logit_scale * g_embeds @ x_embeds.t()).detach().cpu()
logits_per_x = logits_per_g.t().detach().cpu()
logits = {"g_to_x": logits_per_g, "x_to_g": logits_per_x}
ground_truth = torch.arange(len(x_embeds)).view(-1, 1)
for name, logit in logits.items():
ranking = torch.argsort(logit, descending=True)
preds = torch.where(ranking == ground_truth)[1]
preds = preds.detach().cpu().numpy()
metrics[f"{prefix}_{name}_mean_rank"] = preds.mean() + 1
metrics[f"{prefix}_{name}_median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"{prefix}_{name}_R@{k}"] = np.mean(preds < k)
return metrics