"""Training and evaluation""" import run_lib from absl import app, flags from ml_collections.config_flags import config_flags import logging import os FLAGS = flags.FLAGS config_flags.DEFINE_config_file( 'config', None, 'Training configuration.', lock_config=True ) config_flags.DEFINE_config_file( 'classifier_config_nf', None, 'Training configuration.', lock_config=True ) flags.DEFINE_string('workdir', None, 'Work directory.') flags.DEFINE_enum('mode', None, ['train', 'eval'], 'Running mode: train or eval') flags.DEFINE_string('eval_folder', 'eval', 'The folder name for storing evaluation results') flags.mark_flags_as_required(['config', 'mode']) def main(argv): # Set random seed run_lib.set_random_seed(FLAGS.config) if FLAGS.mode == 'train': logger = logging.getLogger() logger.setLevel('INFO') # Run the training pipeline run_lib.train(FLAGS.config) elif FLAGS.mode == 'eval': run_lib.evaluate(FLAGS.config) else: raise ValueError(f"Mode {FLAGS.mode} not recognized.") if __name__ == '__main__': app.run(main)