########################################################################################### # Copyright (c) Hayeon Lee, Eunyoung Hyung [GitHub MetaD2A], 2021 # Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets, ICLR 2021 ########################################################################################### import argparse def str2bool(v): return v.lower() in ['t', 'true', True] def get_parser(): parser = argparse.ArgumentParser() # general settings parser.add_argument('--seed', type=int, default=333) parser.add_argument('--gpu', type=str, default='0', help='set visible gpus') parser.add_argument('--model_name', type=str, default=None, choices=['generator', 'predictor', 'train_arch']) parser.add_argument('--save-path', type=str, default='results', help='the path of save directory') parser.add_argument('--data-path', type=str, default='data', help='the path of save directory') parser.add_argument('--save-epoch', type=int, default=20, help='how many epochs to wait each time to save model states') parser.add_argument('--max-epoch', type=int, default=400, help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=32, help='batch size for generator') parser.add_argument('--graph-data-name', default='ofa_mbv3', help='graph dataset name') parser.add_argument('--nvt', type=int, default=27, help='number of different node types, 21 for ofa_mbv3 without in/out node') # set encoder parser.add_argument('--num-sample', type=int, default=20, help='the number of images as input for set encoder') # graph encoder parser.add_argument('--hs', type=int, default=56, help='hidden size of GRUs') parser.add_argument('--nz', type=int, default=56, help='the number of dimensions of latent vectors z') # test parser.add_argument('--test', action='store_true', default=False, help='turn on test mode') parser.add_argument('--load-epoch', type=int, default=20, help='checkpoint epoch loaded for meta-test') parser.add_argument('--data-name', type=str, default=None, help='meta-test dataset name') parser.add_argument('--num-class', type=int, default=None, help='the number of class of dataset') parser.add_argument('--num-gen-arch', type=int, default=200, help='the number of candidate architectures generated by the generator') parser.add_argument('--train-arch', type=str2bool, default=True, help='whether to train the searched architecture') # database parser.add_argument('--index', type=int, default=None, help='the process number when creating DB') parser.add_argument('--imgnet', type=str, default=None, help='The path of imagenet') parser.add_argument('--collect', action='store_true', default=False, help='whether to train the searched architecture') args = parser.parse_args() return args