diffusionNAG/MobileNetV3/evaluation/gin.py
2024-03-15 14:38:51 +00:00

312 lines
11 KiB
Python

"""Modified from https://github.com/uoguelph-mlrg/GGM-metrics"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
from dgl.utils import expand_as_pair
from dgl.nn import SumPooling, AvgPooling, MaxPooling
class GINConv(nn.Module):
def __init__(self,
apply_func,
aggregator_type,
init_eps=0,
learn_eps=False):
super(GINConv, self).__init__()
self.apply_func = apply_func
self._aggregator_type = aggregator_type
if aggregator_type == 'sum':
self._reducer = fn.sum
elif aggregator_type == 'max':
self._reducer = fn.max
elif aggregator_type == 'mean':
self._reducer = fn.mean
else:
raise KeyError('Aggregator type {} not recognized.'.format(aggregator_type))
# to specify whether eps is trainable or not.
if learn_eps:
self.eps = torch.nn.Parameter(torch.FloatTensor([init_eps]))
else:
self.register_buffer('eps', torch.FloatTensor([init_eps]))
def forward(self, graph, feat, edge_weight=None):
r"""
Description
-----------
Compute Graph Isomorphism Network layer.
Parameters
----------
graph : DGLGraph
The graph.
feat : torch.Tensor or pair of torch.Tensor
If a torch.Tensor is given, the input feature of shape :math:`(N, D_{in})` where
:math:`D_{in}` is size of input feature, :math:`N` is the number of nodes.
If a pair of torch.Tensor is given, the pair must contain two tensors of shape
:math:`(N_{in}, D_{in})` and :math:`(N_{out}, D_{in})`.
If ``apply_func`` is not None, :math:`D_{in}` should
fit the input dimensionality requirement of ``apply_func``.
edge_weight : torch.Tensor, optional
Optional tensor on the edge. If given, the convolution will weight
with regard to the message.
Returns
-------
torch.Tensor
The output feature of shape :math:`(N, D_{out})` where
:math:`D_{out}` is the output dimensionality of ``apply_func``.
If ``apply_func`` is None, :math:`D_{out}` should be the same
as input dimensionality.
"""
with graph.local_scope():
aggregate_fn = self.concat_edge_msg
# aggregate_fn = fn.copy_src('h', 'm')
if edge_weight is not None:
assert edge_weight.shape[0] == graph.number_of_edges()
graph.edata['_edge_weight'] = edge_weight
aggregate_fn = fn.u_mul_e('h', '_edge_weight', 'm')
feat_src, feat_dst = expand_as_pair(feat, graph)
graph.srcdata['h'] = feat_src
graph.update_all(aggregate_fn, self._reducer('m', 'neigh'))
diff = torch.tensor(graph.dstdata['neigh'].shape[1: ]) - torch.tensor(feat_dst.shape[1: ])
zeros = torch.zeros(feat_dst.shape[0], *diff).to(feat_dst.device)
feat_dst = torch.cat([feat_dst, zeros], dim=1)
rst = (1 + self.eps) * feat_dst + graph.dstdata['neigh']
if self.apply_func is not None:
rst = self.apply_func(rst)
return rst
def concat_edge_msg(self, edges):
if self.edge_feat_loc not in edges.data:
return {'m': edges.src['h']}
else:
m = torch.cat([edges.src['h'], edges.data[self.edge_feat_loc]], dim=1)
return {'m': m}
class ApplyNodeFunc(nn.Module):
"""Update the node feature hv with MLP, BN and ReLU."""
def __init__(self, mlp):
super(ApplyNodeFunc, self).__init__()
self.mlp = mlp
self.bn = nn.BatchNorm1d(self.mlp.output_dim)
def forward(self, h):
h = self.mlp(h)
h = self.bn(h)
h = F.relu(h)
return h
class MLP(nn.Module):
"""MLP with linear output"""
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
"""MLP layers construction
Paramters
---------
num_layers: int
The number of linear layers
input_dim: int
The dimensionality of input features
hidden_dim: int
The dimensionality of hidden units at ALL layers
output_dim: int
The number of classes for prediction
"""
super(MLP, self).__init__()
self.linear_or_not = True # default is linear model
self.num_layers = num_layers
self.output_dim = output_dim
if num_layers < 1:
raise ValueError("number of layers should be positive!")
elif num_layers == 1:
# Linear model
self.linear = nn.Linear(input_dim, output_dim)
else:
# Multi-layer model
self.linear_or_not = False
self.linears = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
self.linears.append(nn.Linear(input_dim, hidden_dim))
for layer in range(num_layers - 2):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.linears.append(nn.Linear(hidden_dim, output_dim))
for layer in range(num_layers - 1):
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
def forward(self, x):
if self.linear_or_not:
# If linear model
return self.linear(x)
else:
# If MLP
h = x
for i in range(self.num_layers - 1):
h = F.relu(self.batch_norms[i](self.linears[i](h)))
return self.linears[-1](h)
class GIN(nn.Module):
"""GIN model"""
def __init__(self, num_layers, num_mlp_layers, input_dim, hidden_dim,
graph_pooling_type, neighbor_pooling_type, edge_feat_dim=0,
final_dropout=0.0, learn_eps=False, output_dim=1, **kwargs):
"""model parameters setting
Paramters
---------
num_layers: int
The number of linear layers in the neural network
num_mlp_layers: int
The number of linear layers in mlps
input_dim: int
The dimensionality of input features
hidden_dim: int
The dimensionality of hidden units at ALL layers
output_dim: int
The number of classes for prediction
final_dropout: float
dropout ratio on the final linear layer
learn_eps: boolean
If True, learn epsilon to distinguish center nodes from neighbors
If False, aggregate neighbors and center nodes altogether.
neighbor_pooling_type: str
how to aggregate neighbors (sum, mean, or max)
graph_pooling_type: str
how to aggregate entire nodes in a graph (sum, mean or max)
"""
super().__init__()
def init_weights_orthogonal(m):
if isinstance(m, nn.Linear):
torch.nn.init.orthogonal_(m.weight)
elif isinstance(m, MLP):
if hasattr(m, 'linears'):
m.linears.apply(init_weights_orthogonal)
else:
m.linear.apply(init_weights_orthogonal)
elif isinstance(m, nn.ModuleList):
pass
else:
raise Exception()
self.num_layers = num_layers
self.learn_eps = learn_eps
# List of MLPs
self.ginlayers = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
# self.preprocess_nodes = PreprocessNodeAttrs(
# node_attrs=node_preprocess, output_dim=node_preprocess_output_dim)
# print(input_dim)
for layer in range(self.num_layers - 1):
if layer == 0:
mlp = MLP(num_mlp_layers, input_dim + edge_feat_dim, hidden_dim, hidden_dim)
else:
mlp = MLP(num_mlp_layers, hidden_dim + edge_feat_dim, hidden_dim, hidden_dim)
if kwargs['init'] == 'orthogonal':
init_weights_orthogonal(mlp)
self.ginlayers.append(
GINConv(ApplyNodeFunc(mlp), neighbor_pooling_type, 0, self.learn_eps))
self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
# Linear function for graph poolings of output of each layer
# which maps the output of different layers into a prediction score
self.linears_prediction = torch.nn.ModuleList()
for layer in range(num_layers):
if layer == 0:
self.linears_prediction.append(
nn.Linear(input_dim, output_dim))
else:
self.linears_prediction.append(
nn.Linear(hidden_dim, output_dim))
if kwargs['init'] == 'orthogonal':
# print('orthogonal')
self.linears_prediction.apply(init_weights_orthogonal)
self.drop = nn.Dropout(final_dropout)
if graph_pooling_type == 'sum':
self.pool = SumPooling()
elif graph_pooling_type == 'mean':
self.pool = AvgPooling()
elif graph_pooling_type == 'max':
self.pool = MaxPooling()
else:
raise NotImplementedError
def forward(self, g, h):
# list of hidden representation at each layer (including input)
hidden_rep = [h]
# h = self.preprocess_nodes(h)
for i in range(self.num_layers - 1):
h = self.ginlayers[i](g, h)
h = self.batch_norms[i](h)
h = F.relu(h)
hidden_rep.append(h)
score_over_layer = 0
# perform pooling over all nodes in each graph in every layer
for i, h in enumerate(hidden_rep):
pooled_h = self.pool(g, h)
score_over_layer += self.drop(self.linears_prediction[i](pooled_h))
return score_over_layer
def get_graph_embed(self, g, h):
self.eval()
with torch.no_grad():
# return self.forward(g, h).detach().numpy()
hidden_rep = []
# h = self.preprocess_nodes(h)
for i in range(self.num_layers - 1):
h = self.ginlayers[i](g, h)
h = self.batch_norms[i](h)
h = F.relu(h)
hidden_rep.append(h)
# perform pooling over all nodes in each graph in every layer
graph_embed = torch.Tensor([]).to(self.device)
for i, h in enumerate(hidden_rep):
pooled_h = self.pool(g, h)
graph_embed = torch.cat([graph_embed, pooled_h], dim = 1)
return graph_embed
def get_graph_embed_no_cat(self, g, h):
self.eval()
with torch.no_grad():
hidden_rep = []
# h = self.preprocess_nodes(h)
for i in range(self.num_layers - 1):
h = self.ginlayers[i](g, h)
h = self.batch_norms[i](h)
h = F.relu(h)
hidden_rep.append(h)
return self.pool(g, hidden_rep[-1]).to(self.device)
@property
def edge_feat_loc(self):
return self.ginlayers[0].edge_feat_loc
@edge_feat_loc.setter
def edge_feat_loc(self, loc):
for layer in self.ginlayers:
layer.edge_feat_loc = loc