diffusionNAG/MobileNetV3/main_exp/diffusion/run_lib.py
2024-03-15 14:38:51 +00:00

330 lines
13 KiB
Python

import torch
import numpy as np
import sys
from scipy.stats import pearsonr, spearmanr
from torch.utils.data import DataLoader
sys.path.append('.')
import sampling
import datasets_nas
from models import pgsn
from models import digcn
from models import cate
from models import dagformer
from models import digcn
from models import digcn_meta
from models import regressor
from models.GDSS import scorenetx
from models import utils as mutils
from models.ema import ExponentialMovingAverage
import sde_lib
from utils import *
import losses
from analysis.arch_functions import BasicArchMetricsOFA
import losses
from analysis.arch_functions import NUM_STAGE, MAX_LAYER_PER_STAGE
from all_path import *
def get_sampling_fn(config, p=1, prod_w=False, weight_ratio_abs=False):
# Setup SDEs
if config.training.sde.lower() == 'vpsde':
sde = sde_lib.VPSDE(
beta_min=config.model.beta_min,
beta_max=config.model.beta_max,
N=config.model.num_scales)
sampling_eps = 1e-3
elif config.training.sde.lower() == 'subvpsde':
sde = sde_lib.subVPSDE(
beta_min=config.model.beta_min,
beta_max=config.model.beta_max,
N=config.model.num_scales)
sampling_eps = 1e-3
elif config.training.sde.lower() == 'vesde':
sde = sde_lib.VESDE(
sigma_min=config.model.sigma_min,
sigma_max=config.model.sigma_max,
N=config.model.num_scales)
sampling_eps = 1e-5
else:
raise NotImplementedError(f"SDE {config.training.sde} unknown.")
# create data normalizer and its inverse
inverse_scaler = datasets_nas.get_data_inverse_scaler(config)
sampling_shape = (
config.eval.batch_size, config.data.max_node, config.data.n_vocab) # ofa: 1024, 20, 28
sampling_fn = sampling.get_sampling_fn(
config, sde, sampling_shape, inverse_scaler,
sampling_eps, config.data.name, conditional=True,
p=p, prod_w=prod_w, weight_ratio_abs=weight_ratio_abs)
return sampling_fn, sde
def get_sampling_fn_meta(config, p=1, prod_w=False, weight_ratio_abs=False, init=False, n_init=5):
# Setup SDEs
if config.training.sde.lower() == 'vpsde':
sde = sde_lib.VPSDE(
beta_min=config.model.beta_min,
beta_max=config.model.beta_max,
N=config.model.num_scales)
sampling_eps = 1e-3
elif config.training.sde.lower() == 'subvpsde':
sde = sde_lib.subVPSDE(
beta_min=config.model.beta_min,
beta_max=config.model.beta_max,
N=config.model.num_scales)
sampling_eps = 1e-3
elif config.training.sde.lower() == 'vesde':
sde = sde_lib.VESDE(
sigma_min=config.model.sigma_min,
sigma_max=config.model.sigma_max,
N=config.model.num_scales)
sampling_eps = 1e-5
else:
raise NotImplementedError(f"SDE {config.training.sde} unknown.")
# create data normalizer and its inverse
inverse_scaler = datasets_nas.get_data_inverse_scaler(config)
if init:
sampling_shape = (
n_init, config.data.max_node, config.data.n_vocab)
else:
sampling_shape = (
config.eval.batch_size, config.data.max_node, config.data.n_vocab) # ofa: 1024, 20, 28
sampling_fn = sampling.get_sampling_fn(
config, sde, sampling_shape, inverse_scaler,
sampling_eps, config.data.name, conditional=True,
is_meta=True, data_name=config.sampling.check_dataname,
num_sample=config.model.num_sample)
return sampling_fn, sde
def get_score_model(config, pos_enc_type=2):
# Build sampling functions and Load pre-trained score network & predictor network
score_config = torch.load(config.scorenet_ckpt_path)['config']
ckpt_path = config.scorenet_ckpt_path
score_config.sampling.corrector = 'langevin'
score_config.model.pos_enc_type = pos_enc_type
score_model = mutils.create_model(score_config)
score_ema = ExponentialMovingAverage(
score_model.parameters(), decay=score_config.model.ema_rate)
score_state = dict(
model=score_model, ema=score_ema, step=0, config=score_config)
score_state = restore_checkpoint(
ckpt_path, score_state,
device=config.device, resume=True)
score_ema.copy_to(score_model.parameters())
return score_model, score_ema, score_config
def get_predictor(config):
classifier_model = mutils.create_model(config)
return classifier_model
def get_adj(data_name, except_inout):
if data_name == 'NASBench201':
_adj = np.asarray(
[[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0]]
)
_adj = torch.tensor(_adj, dtype=torch.float32, device=torch.device('cpu'))
if except_inout:
_adj = _adj[1:-1, 1:-1]
elif data_name == 'ofa':
assert except_inout
num_nodes = NUM_STAGE * MAX_LAYER_PER_STAGE
_adj = torch.zeros(num_nodes, num_nodes)
for i in range(num_nodes-1):
_adj[i, i+1] = 1
return _adj
return _adj
def generate_archs(
config, sampling_fn, score_model, score_ema, classifier_model,
num_samples, patient_factor, batch_size=512, classifier_scale=None,
task=None):
metrics = BasicArchMetricsOFA()
# algo = 'none'
adj_s = get_adj(config.data.name, config.data.except_inout)
mask_s = aug_mask(adj_s, algo=config.data.aug_mask_algo)[0]
adj_c = get_adj(config.data.name, config.data.except_inout)
mask_c = aug_mask(adj_c, algo=config.data.aug_mask_algo)[0]
assert (adj_s == adj_c).all() and (mask_s == mask_c).all()
adj_s, mask_s, adj_c, mask_c = \
adj_s.to(config.device), mask_s.to(config.device), adj_c.to(config.device), mask_c.to(config.device)
# Generate and save samples
score_ema.copy_to(score_model.parameters())
if num_samples > batch_size:
num_sampling_rounds = int(np.ceil(num_samples / batch_size) * patient_factor)
else:
num_sampling_rounds = int(patient_factor)
print(f'==> Sampling for {num_sampling_rounds} rounds...')
r = 0
all_samples = []
classifier_scales = list(range(100000, 0, -int(classifier_scale)))
while True and r < num_sampling_rounds:
classifier_scale = classifier_scales[r]
print(f'==> round {r} classifier_scale {classifier_scale}')
sample, _, sample_chain, (score_grad_norm_p, classifier_grad_norm_p, score_grad_norm_c, classifier_grad_norm_c) \
= sampling_fn(score_model, mask_s, classifier_model,
eval_chain=True,
number_chain_steps=config.sampling.number_chain_steps,
classifier_scale=classifier_scale,
task=task, sample_bs=num_samples)
try:
sample_list = quantize(sample, adj_s) # quantization
_, validity, valid_arch_str, _, _ = metrics.compute_validity(sample_list, adj_s, mask_s)
except:
import pdb; pdb.set_trace()
validity = 0.
valid_arch_str = []
print(f' ==> [Validity]: {round(validity, 4)}')
if len(valid_arch_str) > 0:
all_samples += valid_arch_str
print(f' ==> [# Unique Arch]: {len(set(all_samples))}')
if (len(set(all_samples)) >= num_samples):
break
r += 1
return list(set(all_samples))[:num_samples]
def noise_aware_meta_predictor_fit(config,
predictor_model=None,
xtrain=None,
seed=None,
sde=None,
batch_size=5,
epochs=50,
save_best_p_corr=False,
save_path=None,):
assert save_best_p_corr
reset_seed(seed)
data_loader = DataLoader(xtrain,
batch_size=batch_size,
shuffle=True,
drop_last=True)
# create data normalizer and its inverse
scaler = datasets_nas.get_data_scaler(config)
# Initialize model.
optimizer = losses.get_optimizer(config, predictor_model.parameters())
state = dict(optimizer=optimizer,
model=predictor_model,
step=0,
config=config)
# Build one-step training and evaluation functions
optimize_fn = losses.optimization_manager(config)
continuous = config.training.continuous
reduce_mean = config.training.reduce_mean
likelihood_weighting = config.training.likelihood_weighting
train_step_fn = losses.get_step_fn_predictor(sde, train=True, optimize_fn=optimize_fn,
reduce_mean=reduce_mean, continuous=continuous,
likelihood_weighting=likelihood_weighting,
data=config.data.name, label_list=config.data.label_list,
noised=config.training.noised,
t_spot=config.training.t_spot,
is_meta=True)
# temp
# epochs = len(xtrain) * 100
is_best = False
best_p_corr = -1
ckpt_dir = os.path.join(save_path, 'loop')
print(f'==> Training for {epochs} epochs')
for epoch in range(epochs):
pred_list, labels_list = list(), list()
for step, batch in enumerate(data_loader):
x = batch['x'].to(config.device) # (5, 5, 20, 9)???
adj = get_adj(config.data.name, config.data.except_inout)
task = batch['task']
extra = batch
mask = aug_mask(adj,
algo=config.data.aug_mask_algo,
data=config.data.name)
x = scaler(x.to(config.device))
adj = adj.to(config.device)
mask = mask.to(config.device)
task = task.to(config.device)
batch = (x, adj, mask, extra, task)
# Execute one training step
loss, pred, labels = train_step_fn(state, batch)
pred_list += [v.detach().item() for v in pred.squeeze()]
labels_list += [v.detach().item() for v in labels.squeeze()]
p_corr = pearsonr(np.array(pred_list), np.array(labels_list))[0]
s_corr = spearmanr(np.array(pred_list), np.array(labels_list))[0]
if epoch % 50 == 0: print(f'==> [Epoch-{epoch}] P corr: {round(p_corr, 4)} | S corr: {round(s_corr, 4)}')
if save_best_p_corr:
if p_corr > best_p_corr:
is_best = True
best_p_corr = p_corr
os.makedirs(ckpt_dir, exist_ok=True)
save_checkpoint(ckpt_dir, state, epoch, is_best)
if save_best_p_corr:
loaded_state = torch.load(os.path.join(ckpt_dir, 'model_best.pth.tar'), map_location=config.device)
predictor_model.load_state_dict(loaded_state['model'])
def save_checkpoint(ckpt_dir, state, epoch, is_best):
saved_state = {}
for k in state:
if k in ['optimizer', 'model', 'ema']:
saved_state.update({k: state[k].state_dict()})
else:
saved_state.update({k: state[k]})
os.makedirs(ckpt_dir, exist_ok=True)
torch.save(saved_state, os.path.join(ckpt_dir, f'checkpoint_{epoch}.pth.tar'))
if is_best:
shutil.copy(os.path.join(ckpt_dir, f'checkpoint_{epoch}.pth.tar'), os.path.join(ckpt_dir, 'model_best.pth.tar'))
# remove the ckpt except is_best state
for ckpt_file in sorted(os.listdir(ckpt_dir)):
if not ckpt_file.startswith('checkpoint'):
continue
if os.path.join(ckpt_dir, ckpt_file) != os.path.join(ckpt_dir, 'model_best.pth.tar'):
os.remove(os.path.join(ckpt_dir, ckpt_file))
def restore_checkpoint(ckpt_dir, state, device, resume=False):
if not resume:
os.makedirs(os.path.dirname(ckpt_dir), exist_ok=True)
return state
elif not os.path.exists(ckpt_dir):
if not os.path.exists(os.path.dirname(ckpt_dir)):
os.makedirs(os.path.dirname(ckpt_dir))
logging.warning(f"No checkpoint found at {ckpt_dir}. "
f"Returned the same state as input")
return state
else:
loaded_state = torch.load(ckpt_dir, map_location=device)
for k in state:
if k in ['optimizer', 'model', 'ema']:
state[k].load_state_dict(loaded_state[k])
else:
state[k] = loaded_state[k]
return state