diffusionNAG/MobileNetV3/models/cate.py
2024-03-15 14:38:51 +00:00

353 lines
12 KiB
Python

import torch.nn as nn
import torch
import functools
from torch_geometric.utils import dense_to_sparse
from . import utils, layers, gnns
import torch
import torch.nn as nn
import torch.nn.functional as F
from .transformer import Encoder, SemanticEmbedding
from models.GDSS.layers import MLP
from .set_encoder.setenc_models import SetPool
""" Transformer Encoder """
class GraphEncoder(nn.Module):
def __init__(self, config):
super(GraphEncoder, self).__init__()
# Forward Transformers
self.encoder_f = Encoder(config)
def forward(self, x, mask):
h_f, hs_f, attns_f = self.encoder_f(x, mask)
h = torch.cat(hs_f, dim=-1)
return h
@staticmethod
def get_embeddings(h_x):
h_x = h_x.cpu()
return h_x[:, -1]
class CLSHead(nn.Module):
def __init__(self, config, init_weights=None):
super(CLSHead, self).__init__()
self.layer_1 = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.dropout)
self.layer_2 = nn.Linear(config.d_model, config.n_vocab)
if init_weights is not None:
self.layer_2.weight = init_weights
def forward(self, x):
x = self.dropout(torch.tanh(self.layer_1(x)))
return F.log_softmax(self.layer_2(x), dim=-1)
@utils.register_model(name='CATE')
class CATE(nn.Module):
def __init__(self, config):
super(CATE, self).__init__()
# Shared Embedding Layer
self.opEmb = SemanticEmbedding(config.model.graph_encoder)
self.dropout_op = nn.Dropout(p=config.model.dropout)
self.d_model = config.model.graph_encoder.d_model
self.act = act = get_act(config)
# Time
self.timeEmb1 = nn.Linear(self.d_model, self.d_model * 4)
self.timeEmb2 = nn.Linear(self.d_model * 4, self.d_model)
# 2 GraphEncoder for X and Y
self.graph_encoder = GraphEncoder(config.model.graph_encoder)
self.fdim = int(config.model.graph_encoder.n_layers * config.model.graph_encoder.d_model)
self.final = MLP(num_layers=3, input_dim=self.fdim, hidden_dim=2*self.fdim, output_dim=config.data.n_vocab,
use_bn=False, activate_func=F.elu)
self.pos_enc_type = config.model.pos_enc_type
self.pos_encoder = PositionalEncoding_StageWise(d_model=self.d_model, max_len=config.data.max_node)
def forward(self, X, time_cond, maskX):
# Shared Embeddings
emb_x = self.dropout_op(self.opEmb(X))
if self.pos_encoder is not None:
emb_p = self.pos_encoder(emb_x) # [20, 64]
emb_x = emb_x + emb_p
# Time embedding
timesteps = time_cond
emb_t = get_timestep_embedding(timesteps, self.d_model)# time embedding
emb_t = self.timeEmb1(emb_t) # [32, 512]
emb_t = self.timeEmb2(self.act(emb_t)) # [32, 64]
emb_t = emb_t.unsqueeze(1)
emb = emb_x + emb_t
h_x = self.graph_encoder(emb, maskX)
h_x = self.final(h_x)
"""
Shape: Batch Size, Length (with Pad), Feature Dim (forward) + Feature Dim (backward)
*HINT: X1 X2 X3 [PAD] [PAD]
"""
return h_x
@utils.register_model(name='PredictorCATE')
class PredictorCATE(nn.Module):
def __init__(self, config):
super(PredictorCATE, self).__init__()
# Shared Embedding Layer
self.opEmb = SemanticEmbedding(config.model.graph_encoder)
self.dropout_op = nn.Dropout(p=config.model.dropout)
self.d_model = config.model.graph_encoder.d_model
self.act = act = get_act(config)
# Time
self.timeEmb1 = nn.Linear(self.d_model, self.d_model * 4)
self.timeEmb2 = nn.Linear(self.d_model * 4, self.d_model)
# 2 GraphEncoder for X and Y
self.graph_encoder = GraphEncoder(config.model.graph_encoder)
self.fdim = int(config.model.graph_encoder.n_layers * config.model.graph_encoder.d_model)
self.final = MLP(num_layers=3, input_dim=self.fdim, hidden_dim=2*self.fdim, output_dim=config.data.n_vocab,
use_bn=False, activate_func=F.elu)
self.rdim = int(config.data.max_node * config.data.n_vocab)
self.regeress = MLP(num_layers=2, input_dim=self.rdim, hidden_dim=2*self.rdim, output_dim=1,
use_bn=False, activate_func=F.elu)
def forward(self, X, time_cond, maskX):
# Shared Embeddings
emb_x = self.dropout_op(self.opEmb(X))
# Time embedding
timesteps = time_cond
emb_t = get_timestep_embedding(timesteps, self.d_model)# time embedding
emb_t = self.timeEmb1(emb_t) # [32, 512]
emb_t = self.timeEmb2(self.act(emb_t)) # [32, 64]
emb_t = emb_t.unsqueeze(1)
emb = emb_x + emb_t
# h_x = self.graph_encoder(emb_x, maskX)
h_x = self.graph_encoder(emb, maskX)
h_x = self.final(h_x)
"""
Shape: Batch Size, Length (with Pad), Feature Dim (forward) + Feature Dim (backward)
*HINT: X1 X2 X3 [PAD] [PAD]
"""
h_x = h_x.reshape(h_x.size(0), -1)
h_x = self.regeress(h_x)
return h_x
class PositionalEncoding_StageWise(nn.Module):
def __init__(self, d_model, max_len):
super(PositionalEncoding_StageWise, self).__init__()
NUM_STAGE = 5
max_len = int(max_len / NUM_STAGE)
self.encoding = torch.zeros(max_len, d_model)
pos = torch.arange(0, max_len)
pos = pos.float().unsqueeze(dim=1)
_2i = torch.arange(0, d_model, step=2).float()
# (max_len, 1) / (d_model/2 ) -> (max_len, d_model/2)
self.encoding[:, ::2] = torch.sin(pos / (10000 ** (_2i / d_model)))
self.encoding[:, 1::2] = torch.cos(pos / (10000 ** (_2i / d_model))) # (4, 64)
self.encoding = torch.cat([self.encoding] * NUM_STAGE, dim=0)
def forward(self, x):
batch_size, seq_len, _ = x.size()
return self.encoding[:seq_len, :].to(x.device)
@utils.register_model(name='MetaPredictorCATE')
class MetaPredictorCATE(nn.Module):
def __init__(self, config):
super(MetaPredictorCATE, self).__init__()
self.input_type= config.model.input_type
self.hs = config.model.hs
# Shared Embedding Layer
self.opEmb = SemanticEmbedding(config.model.graph_encoder)
self.dropout_op = nn.Dropout(p=config.model.dropout)
self.d_model = config.model.graph_encoder.d_model
self.act = act = get_act(config)
# Time
self.timeEmb1 = nn.Linear(self.d_model, self.d_model * 4)
self.timeEmb2 = nn.Linear(self.d_model * 4, self.d_model)
# 2 GraphEncoder for X and Y
self.graph_encoder = GraphEncoder(config.model.graph_encoder)
self.fdim = int(config.model.graph_encoder.n_layers * config.model.graph_encoder.d_model)
self.final = MLP(num_layers=3, input_dim=self.fdim, hidden_dim=2*self.fdim, output_dim=config.data.n_vocab,
use_bn=False, activate_func=F.elu)
self.rdim = int(config.data.max_node * config.data.n_vocab)
self.regeress = MLP(num_layers=2, input_dim=self.rdim, hidden_dim=2*self.rdim, output_dim=2*self.rdim,
use_bn=False, activate_func=F.elu)
# Set
self.nz = config.model.nz
self.num_sample = config.model.num_sample
self.intra_setpool = SetPool(dim_input=512,
num_outputs=1,
dim_output=self.nz,
dim_hidden=self.nz,
mode='sabPF')
self.inter_setpool = SetPool(dim_input=self.nz,
num_outputs=1,
dim_output=self.nz,
dim_hidden=self.nz,
mode='sabPF')
self.set_fc = nn.Sequential(
nn.Linear(512, self.nz),
nn.ReLU())
input_dim = 0
if 'D' in self.input_type:
input_dim += self.nz
if 'A' in self.input_type:
input_dim += 2*self.rdim
self.pred_fc = nn.Sequential(
nn.Linear(input_dim, self.hs),
nn.Tanh(),
nn.Linear(self.hs, 1)
)
self.sample_state = False
self.D_mu = None
def arch_encode(self, X, time_cond, maskX):
# Shared Embeddings
emb_x = self.dropout_op(self.opEmb(X))
# Time embedding
timesteps = time_cond
emb_t = get_timestep_embedding(timesteps, self.d_model)# time embedding
emb_t = self.timeEmb1(emb_t) # [32, 512]
emb_t = self.timeEmb2(self.act(emb_t)) # [32, 64]
emb_t = emb_t.unsqueeze(1)
emb = emb_x + emb_t
h_x = self.graph_encoder(emb, maskX)
h_x = self.final(h_x)
h_x = h_x.reshape(h_x.size(0), -1)
h_x = self.regeress(h_x)
return h_x
def set_encode(self, task):
proto_batch = []
for x in task:
cls_protos = self.intra_setpool(
x.view(-1, self.num_sample, 512)).squeeze(1)
proto_batch.append(
self.inter_setpool(cls_protos.unsqueeze(0)))
v = torch.stack(proto_batch).squeeze()
return v
def predict(self, D_mu, A_mu):
input_vec = []
if 'D' in self.input_type:
input_vec.append(D_mu)
if 'A' in self.input_type:
input_vec.append(A_mu)
input_vec = torch.cat(input_vec, dim=1)
return self.pred_fc(input_vec)
def forward(self, X, time_cond, maskX, task):
if self.sample_state:
if self.D_mu is None:
self.D_mu = self.set_encode(task)
D_mu = self.D_mu
else:
D_mu = self.set_encode(task)
A_mu = self.arch_encode(X, time_cond, maskX)
y_pred = self.predict(D_mu, A_mu)
return y_pred
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(
torch.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = torch.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
import math
def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000):
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
# magic number 10000 is from transformers
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, (0, 1), mode='constant')
assert emb.shape == (timesteps.shape[0], embedding_dim)
return emb
def get_act(config):
"""Get actiuvation functions from the config file."""
if config.model.nonlinearity.lower() == 'elu':
return nn.ELU()
elif config.model.nonlinearity.lower() == 'relu':
return nn.ReLU()
elif config.model.nonlinearity.lower() == 'lrelu':
return nn.LeakyReLU(negative_slope=0.2)
elif config.model.nonlinearity.lower() == 'swish':
return nn.SiLU()
elif config.model.nonlinearity.lower() == 'tanh':
return nn.Tanh()
else:
raise NotImplementedError('activation function does not exist!')