diffusionNAG/MobileNetV3/models/digcn.py
2024-03-15 14:38:51 +00:00

142 lines
5.7 KiB
Python

# Most of this code is from https://github.com/ultmaster/neuralpredictor.pytorch
# which was authored by Yuge Zhang, 2020
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import utils
from models.cate import PositionalEncoding_StageWise
def normalize_adj(adj):
# Row-normalize matrix
last_dim = adj.size(-1)
rowsum = adj.sum(2, keepdim=True).repeat(1, 1, last_dim)
return torch.div(adj, rowsum)
def graph_pooling(inputs, num_vertices):
num_vertices = num_vertices.to(inputs.device)
out = inputs.sum(1)
return torch.div(out, num_vertices.unsqueeze(-1).expand_as(out))
class DirectedGraphConvolution(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight1 = nn.Parameter(torch.zeros((in_features, out_features)))
self.weight2 = nn.Parameter(torch.zeros((in_features, out_features)))
self.dropout = nn.Dropout(0.1)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weight1.data)
nn.init.xavier_uniform_(self.weight2.data)
def forward(self, inputs, adj):
inputs = inputs.to(self.weight1.device)
adj = adj.to(self.weight1.device)
norm_adj = normalize_adj(adj)
output1 = F.relu(torch.matmul(norm_adj, torch.matmul(inputs, self.weight1)))
inv_norm_adj = normalize_adj(adj.transpose(1, 2))
output2 = F.relu(torch.matmul(inv_norm_adj, torch.matmul(inputs, self.weight2)))
out = (output1 + output2) / 2
out = self.dropout(out)
return out
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
# if nasbench-101: initial_hidden=5. if nasbench-201: initial_hidden=7
@utils.register_model(name='NeuralPredictor')
class NeuralPredictor(nn.Module):
# def __init__(self, initial_hidden=5, gcn_hidden=144, gcn_layers=4, linear_hidden=128):
def __init__(self, config):
super().__init__()
self.gcn = [DirectedGraphConvolution(config.model.graph_encoder.initial_hidden if i == 0 else config.model.graph_encoder.gcn_hidden,
config.model.graph_encoder.gcn_hidden)
for i in range(config.model.graph_encoder.gcn_layers)]
self.gcn = nn.ModuleList(self.gcn)
self.dropout = nn.Dropout(0.1)
self.fc1 = nn.Linear(config.model.graph_encoder.gcn_hidden, config.model.graph_encoder.linear_hidden, bias=False)
self.fc2 = nn.Linear(config.model.graph_encoder.linear_hidden, 1, bias=False)
# Time
self.d_model = config.model.graph_encoder.gcn_hidden
self.timeEmb1 = nn.Linear(self.d_model, self.d_model * 4)
self.timeEmb2 = nn.Linear(self.d_model * 4, self.d_model)
self.act = act = get_act(config)
# self.pos_enc_type = config.model.pos_enc_type
# if self.pos_enc_type == 1:
# raise NotImplementedError
# elif self.pos_enc_type == 2:
# self.pos_encoder = PositionalEncoding_StageWise(d_model=config.model.graph_encoder.gcn_hidden, max_len=config.data.max_node)
# elif self.pos_enc_type == 3:
# raise NotImplementedError
# else:
# self.pos_encoder = None
# def forward(self, inputs):
def forward(self, X, time_cond, maskX):
# numv, adj, out = inputs["num_vertices"], inputs["adjacency"], inputs["operations"]
out = X # (5, 20, 10)
adj = maskX # (1, 20, 20)
# # pos embedding
# if self.pos_encoder is not None:
# emb_p = self.pos_encoder(out) # [20, 64]
# out = out + emb_p
numv = torch.tensor([adj.size(1)] * adj.size(0)).to(out.device) # 20
gs = adj.size(1) # graph node number
timesteps = time_cond
emb_t = get_timestep_embedding(timesteps, self.d_model)# time embedding
emb_t = self.timeEmb1(emb_t)
emb_t = self.timeEmb2(self.act(emb_t)) # (5, 144)
adj_with_diag = normalize_adj(adj + torch.eye(gs, device=adj.device)) # assuming diagonal is not 1
for layer in self.gcn:
out = layer(out, adj_with_diag)
out = graph_pooling(out, numv) # out: 5, 20, 144
# time
out = out + emb_t
out = self.fc1(out) # (5, 128)
out = self.dropout(out)
# out = self.fc2(out).view(-1)
out = self.fc2(out)
return out
import math
def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000):
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
# magic number 10000 is from transformers
emb = math.log(max_positions) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = F.pad(emb, (0, 1), mode='constant')
assert emb.shape == (timesteps.shape[0], embedding_dim)
return emb
def get_act(config):
"""Get actiuvation functions from the config file."""
if config.model.nonlinearity.lower() == 'elu':
return nn.ELU()
elif config.model.nonlinearity.lower() == 'relu':
return nn.ReLU()
elif config.model.nonlinearity.lower() == 'lrelu':
return nn.LeakyReLU(negative_slope=0.2)
elif config.model.nonlinearity.lower() == 'swish':
return nn.SiLU()
elif config.model.nonlinearity.lower() == 'tanh':
return nn.Tanh()
else:
raise NotImplementedError('activation function does not exist!')