diffusionNAG/NAS-Bench-201/configs/tr_meta_surrogate.py
2024-03-15 14:38:51 +00:00

126 lines
3.4 KiB
Python

"""Training PGSN on Community Small Dataset with GraphGDP"""
import ml_collections
import torch
from all_path import SCORENET_CKPT_PATH
from all_path import NASBENCH201_INFO
def get_config():
config = ml_collections.ConfigDict()
# config.search_space = None
# general
config.folder_name = 'test'
config.model_type = 'meta_surrogate'
config.task = 'tr_meta_surrogate'
config.exp_name = None
config.seed = 42
config.device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
config.resume = False
config.scorenet_ckpt_path = SCORENET_CKPT_PATH
# training
config.training = training = ml_collections.ConfigDict()
training.sde = 'vesde'
training.continuous = True
training.reduce_mean = True
training.noised = True
training.batch_size = 256
training.eval_batch_size = 100
training.n_iters = 10000
training.snapshot_freq = 500
training.log_freq = 100
training.eval_freq = 100
training.snapshot_sampling = True
training.likelihood_weighting = False
# sampling
config.sampling = sampling = ml_collections.ConfigDict()
sampling.method = 'pc'
sampling.predictor = 'euler_maruyama'
sampling.corrector = 'langevin'
sampling.n_steps_each = 1
sampling.noise_removal = True
sampling.probability_flow = False
sampling.snr = 0.16
# for conditional sampling
sampling.classifier_scale = 10000.0
sampling.regress = True
sampling.labels = 'max'
sampling.weight_ratio = False
sampling.weight_scheduling = False
sampling.check_dataname = 'cifar10'
# evaluation
config.eval = evaluate = ml_collections.ConfigDict()
evaluate.batch_size = 512
evaluate.enable_sampling = True
evaluate.num_samples = 1024
# data
config.data = data = ml_collections.ConfigDict()
data.centered = True
data.dequantization = False
data.root = NASBENCH201_INFO
data.name = 'NASBench201'
data.max_node = 8
data.n_vocab = 7
data.START_TYPE = 0
data.END_TYPE = 1
data.num_channels = 1
data.label_list = ['meta-acc']
# aug_mask
data.aug_mask_algo = 'floyd' # 'long_range' | 'floyd'
# model
config.model = model = ml_collections.ConfigDict()
model.name = 'MetaNeuralPredictor'
model.ema_rate = 0.9999
model.normalization = 'GroupNorm'
model.nonlinearity = 'swish'
model.nf = 128
model.num_gnn_layers = 4
model.size_cond = False
model.embedding_type = 'positional'
model.rw_depth = 16
model.graph_layer = 'PosTransLayer'
model.edge_th = -1.
model.heads = 8
model.attn_clamp = False
# meta-predictor
model.input_type = 'DA'
model.hs = 32
model.nz = 56
model.num_sample = 20
model.num_scales = 1000
model.beta_min = 0.1
model.beta_max = 5.0
model.sigma_min = 0.1
model.sigma_max = 5.0
model.dropout = 0.1
# graph encoder
config.model.graph_encoder = graph_encoder = ml_collections.ConfigDict()
graph_encoder.initial_hidden = 7
graph_encoder.gcn_hidden = 144
graph_encoder.gcn_layers = 4
graph_encoder.linear_hidden = 128
# optimization
config.optim = optim = ml_collections.ConfigDict()
optim.weight_decay = 0
optim.optimizer = 'Adam'
optim.lr = 0.001
optim.beta1 = 0.9
optim.eps = 1e-8
optim.warmup = 1000
optim.grad_clip = 1.
return config