209 lines
5.8 KiB
Python
209 lines
5.8 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
import networkx as nx
|
|
import numpy as np
|
|
|
|
|
|
# -------- Mask batch of node features with 0-1 flags tensor --------
|
|
def mask_x(x, flags):
|
|
|
|
if flags is None:
|
|
flags = torch.ones((x.shape[0], x.shape[1]), device=x.device)
|
|
return x * flags[:,:,None]
|
|
|
|
|
|
# -------- Mask batch of adjacency matrices with 0-1 flags tensor --------
|
|
def mask_adjs(adjs, flags):
|
|
"""
|
|
:param adjs: B x N x N or B x C x N x N
|
|
:param flags: B x N
|
|
:return:
|
|
"""
|
|
if flags is None:
|
|
flags = torch.ones((adjs.shape[0], adjs.shape[-1]), device=adjs.device)
|
|
|
|
if len(adjs.shape) == 4:
|
|
flags = flags.unsqueeze(1) # B x 1 x N
|
|
adjs = adjs * flags.unsqueeze(-1)
|
|
adjs = adjs * flags.unsqueeze(-2)
|
|
return adjs
|
|
|
|
|
|
# -------- Create flags tensor from graph dataset --------
|
|
def node_flags(adj, eps=1e-5):
|
|
|
|
flags = torch.abs(adj).sum(-1).gt(eps).to(dtype=torch.float32)
|
|
|
|
if len(flags.shape)==3:
|
|
flags = flags[:,0,:]
|
|
return flags
|
|
|
|
|
|
# -------- Create initial node features --------
|
|
def init_features(init, adjs=None, nfeat=10):
|
|
|
|
if init=='zeros':
|
|
feature = torch.zeros((adjs.size(0), adjs.size(1), nfeat), dtype=torch.float32, device=adjs.device)
|
|
elif init=='ones':
|
|
feature = torch.ones((adjs.size(0), adjs.size(1), nfeat), dtype=torch.float32, device=adjs.device)
|
|
elif init=='deg':
|
|
feature = adjs.sum(dim=-1).to(torch.long)
|
|
num_classes = nfeat
|
|
try:
|
|
feature = F.one_hot(feature, num_classes=num_classes).to(torch.float32)
|
|
except:
|
|
print(feature.max().item())
|
|
raise NotImplementedError(f'max_feat_num mismatch')
|
|
else:
|
|
raise NotImplementedError(f'{init} not implemented')
|
|
|
|
flags = node_flags(adjs)
|
|
|
|
return mask_x(feature, flags)
|
|
|
|
|
|
# -------- Sample initial flags tensor from the training graph set --------
|
|
def init_flags(graph_list, config, batch_size=None):
|
|
if batch_size is None:
|
|
batch_size = config.data.batch_size
|
|
max_node_num = config.data.max_node_num
|
|
graph_tensor = graphs_to_tensor(graph_list, max_node_num)
|
|
idx = np.random.randint(0, len(graph_list), batch_size)
|
|
flags = node_flags(graph_tensor[idx])
|
|
|
|
return flags
|
|
|
|
|
|
# -------- Generate noise --------
|
|
def gen_noise(x, flags, sym=True):
|
|
z = torch.randn_like(x)
|
|
if sym:
|
|
z = z.triu(1)
|
|
z = z + z.transpose(-1,-2)
|
|
z = mask_adjs(z, flags)
|
|
else:
|
|
z = mask_x(z, flags)
|
|
return z
|
|
|
|
|
|
# -------- Quantize generated graphs --------
|
|
def quantize(adjs, thr=0.5):
|
|
adjs_ = torch.where(adjs < thr, torch.zeros_like(adjs), torch.ones_like(adjs))
|
|
return adjs_
|
|
|
|
|
|
# -------- Quantize generated molecules --------
|
|
# adjs: 32 x 9 x 9
|
|
def quantize_mol(adjs):
|
|
if type(adjs).__name__ == 'Tensor':
|
|
adjs = adjs.detach().cpu()
|
|
else:
|
|
adjs = torch.tensor(adjs)
|
|
adjs[adjs >= 2.5] = 3
|
|
adjs[torch.bitwise_and(adjs >= 1.5, adjs < 2.5)] = 2
|
|
adjs[torch.bitwise_and(adjs >= 0.5, adjs < 1.5)] = 1
|
|
adjs[adjs < 0.5] = 0
|
|
return np.array(adjs.to(torch.int64))
|
|
|
|
|
|
def adjs_to_graphs(adjs, is_cuda=False):
|
|
graph_list = []
|
|
for adj in adjs:
|
|
if is_cuda:
|
|
adj = adj.detach().cpu().numpy()
|
|
G = nx.from_numpy_matrix(adj)
|
|
G.remove_edges_from(nx.selfloop_edges(G))
|
|
G.remove_nodes_from(list(nx.isolates(G)))
|
|
if G.number_of_nodes() < 1:
|
|
G.add_node(1)
|
|
graph_list.append(G)
|
|
return graph_list
|
|
|
|
|
|
# -------- Check if the adjacency matrices are symmetric --------
|
|
def check_sym(adjs, print_val=False):
|
|
sym_error = (adjs-adjs.transpose(-1,-2)).abs().sum([0,1,2])
|
|
if not sym_error < 1e-2:
|
|
raise ValueError(f'Not symmetric: {sym_error:.4e}')
|
|
if print_val:
|
|
print(f'{sym_error:.4e}')
|
|
|
|
|
|
# -------- Create higher order adjacency matrices --------
|
|
def pow_tensor(x, cnum):
|
|
# x : B x N x N
|
|
x_ = x.clone()
|
|
xc = [x.unsqueeze(1)]
|
|
for _ in range(cnum-1):
|
|
x_ = torch.bmm(x_, x)
|
|
xc.append(x_.unsqueeze(1))
|
|
xc = torch.cat(xc, dim=1)
|
|
|
|
return xc
|
|
|
|
|
|
# -------- Create padded adjacency matrices --------
|
|
def pad_adjs(ori_adj, node_number):
|
|
a = ori_adj
|
|
ori_len = a.shape[-1]
|
|
if ori_len == node_number:
|
|
return a
|
|
if ori_len > node_number:
|
|
raise ValueError(f'ori_len {ori_len} > node_number {node_number}')
|
|
a = np.concatenate([a, np.zeros([ori_len, node_number - ori_len])], axis=-1)
|
|
a = np.concatenate([a, np.zeros([node_number - ori_len, node_number])], axis=0)
|
|
return a
|
|
|
|
|
|
def graphs_to_tensor(graph_list, max_node_num):
|
|
adjs_list = []
|
|
max_node_num = max_node_num
|
|
|
|
for g in graph_list:
|
|
assert isinstance(g, nx.Graph)
|
|
node_list = []
|
|
for v, feature in g.nodes.data('feature'):
|
|
node_list.append(v)
|
|
|
|
adj = nx.to_numpy_matrix(g, nodelist=node_list)
|
|
padded_adj = pad_adjs(adj, node_number=max_node_num)
|
|
adjs_list.append(padded_adj)
|
|
|
|
del graph_list
|
|
|
|
adjs_np = np.asarray(adjs_list)
|
|
del adjs_list
|
|
|
|
adjs_tensor = torch.tensor(adjs_np, dtype=torch.float32)
|
|
del adjs_np
|
|
|
|
return adjs_tensor
|
|
|
|
|
|
def graphs_to_adj(graph, max_node_num):
|
|
max_node_num = max_node_num
|
|
|
|
assert isinstance(graph, nx.Graph)
|
|
node_list = []
|
|
for v, feature in graph.nodes.data('feature'):
|
|
node_list.append(v)
|
|
|
|
adj = nx.to_numpy_matrix(graph, nodelist=node_list)
|
|
padded_adj = pad_adjs(adj, node_number=max_node_num)
|
|
|
|
adj = torch.tensor(padded_adj, dtype=torch.float32)
|
|
del padded_adj
|
|
|
|
return adj
|
|
|
|
|
|
def node_feature_to_matrix(x):
|
|
"""
|
|
:param x: BS x N x F
|
|
:return:
|
|
x_pair: BS x N x N x 2F
|
|
"""
|
|
x_b = x.unsqueeze(-2).expand(x.size(0), x.size(1), x.size(1), -1) # BS x N x N x F
|
|
x_pair = torch.cat([x_b, x_b.transpose(1, 2)], dim=-1) # BS x N x N x 2F
|
|
|
|
return x_pair |