70 lines
3.0 KiB
Python
70 lines
3.0 KiB
Python
|
from datasets import get_datasets
|
||
|
from config_utils import load_config
|
||
|
import torch
|
||
|
import torchvision
|
||
|
|
||
|
class AddGaussianNoise(object):
|
||
|
def __init__(self, mean=0., std=0.001):
|
||
|
self.std = std
|
||
|
self.mean = mean
|
||
|
|
||
|
def __call__(self, tensor):
|
||
|
return tensor + torch.randn(tensor.size()) * self.std + self.mean
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
class RepeatSampler(torch.utils.data.sampler.Sampler):
|
||
|
def __init__(self, samp, repeat):
|
||
|
self.samp = samp
|
||
|
self.repeat = repeat
|
||
|
def __iter__(self):
|
||
|
for i in self.samp:
|
||
|
for j in range(self.repeat):
|
||
|
yield i
|
||
|
def __len__(self):
|
||
|
return self.repeat*len(self.samp)
|
||
|
|
||
|
|
||
|
def get_data(dataset, data_loc, trainval, batch_size, augtype, repeat, args, pin_memory=True):
|
||
|
train_data, valid_data, xshape, class_num = get_datasets(dataset, data_loc, cutout=0)
|
||
|
if augtype == 'gaussnoise':
|
||
|
train_data.transform.transforms = train_data.transform.transforms[2:]
|
||
|
train_data.transform.transforms.append(AddGaussianNoise(std=args.sigma))
|
||
|
elif augtype == 'cutout':
|
||
|
train_data.transform.transforms = train_data.transform.transforms[2:]
|
||
|
train_data.transform.transforms.append(torchvision.transforms.RandomErasing(p=0.9, scale=(0.02, 0.04)))
|
||
|
elif augtype == 'none':
|
||
|
train_data.transform.transforms = train_data.transform.transforms[2:]
|
||
|
|
||
|
if dataset == 'cifar10':
|
||
|
acc_type = 'ori-test'
|
||
|
val_acc_type = 'x-valid'
|
||
|
|
||
|
else:
|
||
|
acc_type = 'x-test'
|
||
|
val_acc_type = 'x-valid'
|
||
|
|
||
|
if trainval and 'cifar10' in dataset:
|
||
|
cifar_split = load_config('config_utils/cifar-split.txt', None, None)
|
||
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||
|
if repeat > 0:
|
||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
|
||
|
num_workers=0, pin_memory=pin_memory, sampler= RepeatSampler(torch.utils.data.sampler.SubsetRandomSampler(train_split), repeat))
|
||
|
else:
|
||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
|
||
|
num_workers=0, pin_memory=pin_memory, sampler= torch.utils.data.sampler.SubsetRandomSampler(train_split))
|
||
|
|
||
|
|
||
|
else:
|
||
|
if repeat > 0:
|
||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, #shuffle=True,
|
||
|
num_workers=0, pin_memory=pin_memory, sampler= RepeatSampler(torch.utils.data.sampler.SubsetRandomSampler(range(len(train_data))), repeat))
|
||
|
else:
|
||
|
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True,
|
||
|
num_workers=0, pin_memory=pin_memory)
|
||
|
return train_loader
|