Initial commit
This commit is contained in:
commit
357e877e8d
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
*.pth
|
||||
__pycache__
|
14
README.md
Normal file
14
README.md
Normal file
@ -0,0 +1,14 @@
|
||||
# Neural Architecture Search Without Training
|
||||
|
||||
**IMPORTANT** : our codebase relies on use of the NASBench-201 dataset. As such we make use of cloned code from [this repository](https://github.com/D-X-Y/AutoDL-Projects). We have left the copyright notices in the code that has been cloned, which includes the name of the author of the open source library that our code relies on.
|
||||
|
||||
The datasets can also be downloaded as instructed from the NASBench-201 README: [https://github.com/D-X-Y/NAS-Bench-201](https://github.com/D-X-Y/NAS-Bench-201).
|
||||
|
||||
To exactly reproduce our results:
|
||||
|
||||
```
|
||||
conda env create -f environment.yml
|
||||
|
||||
conda activate nas-wot
|
||||
./reproduce.sh
|
||||
```
|
13
config_utils/__init__.py
Normal file
13
config_utils/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .configure_utils import load_config, dict2config, configure2str
|
||||
from .basic_args import obtain_basic_args
|
||||
from .attention_args import obtain_attention_args
|
||||
from .random_baseline import obtain_RandomSearch_args
|
||||
from .cls_kd_args import obtain_cls_kd_args
|
||||
from .cls_init_args import obtain_cls_init_args
|
||||
from .search_single_args import obtain_search_single_args
|
||||
from .search_args import obtain_search_args
|
||||
# for network pruning
|
||||
from .pruning_args import obtain_pruning_args
|
22
config_utils/attention_args.py
Normal file
22
config_utils/attention_args.py
Normal file
@ -0,0 +1,22 @@
|
||||
import random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
def obtain_attention_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--init_model' , type=str, help='The initialization model path.')
|
||||
parser.add_argument('--model_config', type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--att_channel' , type=int, help='.')
|
||||
parser.add_argument('--att_spatial' , type=str, help='.')
|
||||
parser.add_argument('--att_active' , type=str, help='.')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
return args
|
24
config_utils/basic_args.py
Normal file
24
config_utils/basic_args.py
Normal file
@ -0,0 +1,24 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||||
##################################################
|
||||
import random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
def obtain_basic_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--init_model' , type=str, help='The initialization model path.')
|
||||
parser.add_argument('--model_config', type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--model_source', type=str, default='normal',help='The source of model defination.')
|
||||
parser.add_argument('--extra_model_path', type=str, default=None, help='The extra model ckp file (help to indicate the searched architecture).')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
return args
|
4
config_utils/cifar-split.txt
Normal file
4
config_utils/cifar-split.txt
Normal file
File diff suppressed because one or more lines are too long
20
config_utils/cls_init_args.py
Normal file
20
config_utils/cls_init_args.py
Normal file
@ -0,0 +1,20 @@
|
||||
import random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
def obtain_cls_init_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--init_model' , type=str, help='The initialization model path.')
|
||||
parser.add_argument('--model_config', type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--init_checkpoint', type=str, help='The checkpoint path to the initial model.')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
return args
|
23
config_utils/cls_kd_args.py
Normal file
23
config_utils/cls_kd_args.py
Normal file
@ -0,0 +1,23 @@
|
||||
import random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
def obtain_cls_kd_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--init_model' , type=str, help='The initialization model path.')
|
||||
parser.add_argument('--model_config', type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--KD_checkpoint', type=str, help='The teacher checkpoint in knowledge distillation.')
|
||||
parser.add_argument('--KD_alpha' , type=float, help='The alpha parameter in knowledge distillation.')
|
||||
parser.add_argument('--KD_temperature', type=float, help='The temperature parameter in knowledge distillation.')
|
||||
#parser.add_argument('--KD_feature', type=float, help='Knowledge distillation at the feature level.')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
return args
|
106
config_utils/configure_utils.py
Normal file
106
config_utils/configure_utils.py
Normal file
@ -0,0 +1,106 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
import os, json
|
||||
from os import path as osp
|
||||
from pathlib import Path
|
||||
from collections import namedtuple
|
||||
|
||||
support_types = ('str', 'int', 'bool', 'float', 'none')
|
||||
|
||||
|
||||
def convert_param(original_lists):
|
||||
assert isinstance(original_lists, list), 'The type is not right : {:}'.format(original_lists)
|
||||
ctype, value = original_lists[0], original_lists[1]
|
||||
assert ctype in support_types, 'Ctype={:}, support={:}'.format(ctype, support_types)
|
||||
is_list = isinstance(value, list)
|
||||
if not is_list: value = [value]
|
||||
outs = []
|
||||
for x in value:
|
||||
if ctype == 'int':
|
||||
x = int(x)
|
||||
elif ctype == 'str':
|
||||
x = str(x)
|
||||
elif ctype == 'bool':
|
||||
x = bool(int(x))
|
||||
elif ctype == 'float':
|
||||
x = float(x)
|
||||
elif ctype == 'none':
|
||||
if x.lower() != 'none':
|
||||
raise ValueError('For the none type, the value must be none instead of {:}'.format(x))
|
||||
x = None
|
||||
else:
|
||||
raise TypeError('Does not know this type : {:}'.format(ctype))
|
||||
outs.append(x)
|
||||
if not is_list: outs = outs[0]
|
||||
return outs
|
||||
|
||||
|
||||
def load_config(path, extra, logger):
|
||||
path = str(path)
|
||||
if hasattr(logger, 'log'): logger.log(path)
|
||||
assert os.path.exists(path), 'Can not find {:}'.format(path)
|
||||
# Reading data back
|
||||
with open(path, 'r') as f:
|
||||
data = json.load(f)
|
||||
content = { k: convert_param(v) for k,v in data.items()}
|
||||
assert extra is None or isinstance(extra, dict), 'invalid type of extra : {:}'.format(extra)
|
||||
if isinstance(extra, dict): content = {**content, **extra}
|
||||
Arguments = namedtuple('Configure', ' '.join(content.keys()))
|
||||
content = Arguments(**content)
|
||||
if hasattr(logger, 'log'): logger.log('{:}'.format(content))
|
||||
return content
|
||||
|
||||
|
||||
def configure2str(config, xpath=None):
|
||||
if not isinstance(config, dict):
|
||||
config = config._asdict()
|
||||
def cstring(x):
|
||||
return "\"{:}\"".format(x)
|
||||
def gtype(x):
|
||||
if isinstance(x, list): x = x[0]
|
||||
if isinstance(x, str) : return 'str'
|
||||
elif isinstance(x, bool) : return 'bool'
|
||||
elif isinstance(x, int): return 'int'
|
||||
elif isinstance(x, float): return 'float'
|
||||
elif x is None : return 'none'
|
||||
else: raise ValueError('invalid : {:}'.format(x))
|
||||
def cvalue(x, xtype):
|
||||
if isinstance(x, list): is_list = True
|
||||
else:
|
||||
is_list, x = False, [x]
|
||||
temps = []
|
||||
for temp in x:
|
||||
if xtype == 'bool' : temp = cstring(int(temp))
|
||||
elif xtype == 'none': temp = cstring('None')
|
||||
else : temp = cstring(temp)
|
||||
temps.append( temp )
|
||||
if is_list:
|
||||
return "[{:}]".format( ', '.join( temps ) )
|
||||
else:
|
||||
return temps[0]
|
||||
|
||||
xstrings = []
|
||||
for key, value in config.items():
|
||||
xtype = gtype(value)
|
||||
string = ' {:20s} : [{:8s}, {:}]'.format(cstring(key), cstring(xtype), cvalue(value, xtype))
|
||||
xstrings.append(string)
|
||||
Fstring = '{\n' + ',\n'.join(xstrings) + '\n}'
|
||||
if xpath is not None:
|
||||
parent = Path(xpath).resolve().parent
|
||||
parent.mkdir(parents=True, exist_ok=True)
|
||||
if osp.isfile(xpath): os.remove(xpath)
|
||||
with open(xpath, "w") as text_file:
|
||||
text_file.write('{:}'.format(Fstring))
|
||||
return Fstring
|
||||
|
||||
|
||||
def dict2config(xdict, logger):
|
||||
assert isinstance(xdict, dict), 'invalid type : {:}'.format( type(xdict) )
|
||||
Arguments = namedtuple('Configure', ' '.join(xdict.keys()))
|
||||
content = Arguments(**xdict)
|
||||
if hasattr(logger, 'log'): logger.log('{:}'.format(content))
|
||||
return content
|
26
config_utils/pruning_args.py
Normal file
26
config_utils/pruning_args.py
Normal file
@ -0,0 +1,26 @@
|
||||
import os, sys, time, random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
def obtain_pruning_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--init_model' , type=str, help='The initialization model path.')
|
||||
parser.add_argument('--model_config', type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--keep_ratio' , type=float, help='The left channel ratio compared to the original network.')
|
||||
parser.add_argument('--model_version', type=str, help='The network version.')
|
||||
parser.add_argument('--KD_alpha' , type=float, help='The alpha parameter in knowledge distillation.')
|
||||
parser.add_argument('--KD_temperature', type=float, help='The temperature parameter in knowledge distillation.')
|
||||
parser.add_argument('--Regular_W_feat', type=float, help='The .')
|
||||
parser.add_argument('--Regular_W_conv', type=float, help='The .')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
assert args.keep_ratio > 0 and args.keep_ratio <= 1, 'invalid keep ratio : {:}'.format(args.keep_ratio)
|
||||
return args
|
24
config_utils/random_baseline.py
Normal file
24
config_utils/random_baseline.py
Normal file
@ -0,0 +1,24 @@
|
||||
import os, sys, time, random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
|
||||
def obtain_RandomSearch_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--init_model' , type=str, help='The initialization model path.')
|
||||
parser.add_argument('--expect_flop', type=float, help='The expected flop keep ratio.')
|
||||
parser.add_argument('--arch_nums' , type=int, help='The maximum number of running random arch generating..')
|
||||
parser.add_argument('--model_config', type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--random_mode', type=str, choices=['random', 'fix'], help='The path to the optimizer configuration')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
#assert args.flop_ratio_min < args.flop_ratio_max, 'flop-ratio {:} vs {:}'.format(args.flop_ratio_min, args.flop_ratio_max)
|
||||
return args
|
32
config_utils/search_args.py
Normal file
32
config_utils/search_args.py
Normal file
@ -0,0 +1,32 @@
|
||||
import os, sys, time, random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
|
||||
def obtain_search_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--model_config' , type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config' , type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--split_path' , type=str, help='The split file path.')
|
||||
#parser.add_argument('--arch_para_pure', type=int, help='The architecture-parameter pure or not.')
|
||||
parser.add_argument('--gumbel_tau_max', type=float, help='The maximum tau for Gumbel.')
|
||||
parser.add_argument('--gumbel_tau_min', type=float, help='The minimum tau for Gumbel.')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--FLOP_ratio' , type=float, help='The expected FLOP ratio.')
|
||||
parser.add_argument('--FLOP_weight' , type=float, help='The loss weight for FLOP.')
|
||||
parser.add_argument('--FLOP_tolerant' , type=float, help='The tolerant range for FLOP.')
|
||||
# ablation studies
|
||||
parser.add_argument('--ablation_num_select', type=int, help='The number of randomly selected channels.')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size' , type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
assert args.gumbel_tau_max is not None and args.gumbel_tau_min is not None
|
||||
assert args.FLOP_tolerant is not None and args.FLOP_tolerant > 0, 'invalid FLOP_tolerant : {:}'.format(FLOP_tolerant)
|
||||
#assert args.arch_para_pure is not None, 'arch_para_pure is not None: {:}'.format(args.arch_para_pure)
|
||||
#args.arch_para_pure = bool(args.arch_para_pure)
|
||||
return args
|
31
config_utils/search_single_args.py
Normal file
31
config_utils/search_single_args.py
Normal file
@ -0,0 +1,31 @@
|
||||
import os, sys, time, random, argparse
|
||||
from .share_args import add_shared_args
|
||||
|
||||
|
||||
def obtain_search_single_args():
|
||||
parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--resume' , type=str, help='Resume path.')
|
||||
parser.add_argument('--model_config' , type=str, help='The path to the model configuration')
|
||||
parser.add_argument('--optim_config' , type=str, help='The path to the optimizer configuration')
|
||||
parser.add_argument('--split_path' , type=str, help='The split file path.')
|
||||
parser.add_argument('--search_shape' , type=str, help='The shape to be searched.')
|
||||
#parser.add_argument('--arch_para_pure', type=int, help='The architecture-parameter pure or not.')
|
||||
parser.add_argument('--gumbel_tau_max', type=float, help='The maximum tau for Gumbel.')
|
||||
parser.add_argument('--gumbel_tau_min', type=float, help='The minimum tau for Gumbel.')
|
||||
parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.')
|
||||
parser.add_argument('--FLOP_ratio' , type=float, help='The expected FLOP ratio.')
|
||||
parser.add_argument('--FLOP_weight' , type=float, help='The loss weight for FLOP.')
|
||||
parser.add_argument('--FLOP_tolerant' , type=float, help='The tolerant range for FLOP.')
|
||||
add_shared_args( parser )
|
||||
# Optimization options
|
||||
parser.add_argument('--batch_size' , type=int, default=2, help='Batch size for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.rand_seed is None or args.rand_seed < 0:
|
||||
args.rand_seed = random.randint(1, 100000)
|
||||
assert args.save_dir is not None, 'save-path argument can not be None'
|
||||
assert args.gumbel_tau_max is not None and args.gumbel_tau_min is not None
|
||||
assert args.FLOP_tolerant is not None and args.FLOP_tolerant > 0, 'invalid FLOP_tolerant : {:}'.format(FLOP_tolerant)
|
||||
#assert args.arch_para_pure is not None, 'arch_para_pure is not None: {:}'.format(args.arch_para_pure)
|
||||
#args.arch_para_pure = bool(args.arch_para_pure)
|
||||
return args
|
17
config_utils/share_args.py
Normal file
17
config_utils/share_args.py
Normal file
@ -0,0 +1,17 @@
|
||||
import os, sys, time, random, argparse
|
||||
|
||||
def add_shared_args( parser ):
|
||||
# Data Generation
|
||||
parser.add_argument('--dataset', type=str, help='The dataset name.')
|
||||
parser.add_argument('--data_path', type=str, help='The dataset name.')
|
||||
parser.add_argument('--cutout_length', type=int, help='The cutout length, negative means not use.')
|
||||
# Printing
|
||||
parser.add_argument('--print_freq', type=int, default=100, help='print frequency (default: 200)')
|
||||
parser.add_argument('--print_freq_eval', type=int, default=100, help='print frequency (default: 200)')
|
||||
# Checkpoints
|
||||
parser.add_argument('--eval_frequency', type=int, default=1, help='evaluation frequency (default: 200)')
|
||||
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
|
||||
# Acceleration
|
||||
parser.add_argument('--workers', type=int, default=8, help='number of data loading workers (default: 8)')
|
||||
# Random Seed
|
||||
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
129
datasets/DownsampledImageNet.py
Normal file
129
datasets/DownsampledImageNet.py
Normal file
@ -0,0 +1,129 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import os, sys, hashlib, torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import torch.utils.data as data
|
||||
if sys.version_info[0] == 2:
|
||||
import cPickle as pickle
|
||||
else:
|
||||
import pickle
|
||||
|
||||
|
||||
def calculate_md5(fpath, chunk_size=1024 * 1024):
|
||||
md5 = hashlib.md5()
|
||||
with open(fpath, 'rb') as f:
|
||||
for chunk in iter(lambda: f.read(chunk_size), b''):
|
||||
md5.update(chunk)
|
||||
return md5.hexdigest()
|
||||
|
||||
|
||||
def check_md5(fpath, md5, **kwargs):
|
||||
return md5 == calculate_md5(fpath, **kwargs)
|
||||
|
||||
|
||||
def check_integrity(fpath, md5=None):
|
||||
if not os.path.isfile(fpath): return False
|
||||
if md5 is None: return True
|
||||
else : return check_md5(fpath, md5)
|
||||
|
||||
|
||||
class ImageNet16(data.Dataset):
|
||||
# http://image-net.org/download-images
|
||||
# A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
|
||||
# https://arxiv.org/pdf/1707.08819.pdf
|
||||
|
||||
train_list = [
|
||||
['train_data_batch_1', '27846dcaa50de8e21a7d1a35f30f0e91'],
|
||||
['train_data_batch_2', 'c7254a054e0e795c69120a5727050e3f'],
|
||||
['train_data_batch_3', '4333d3df2e5ffb114b05d2ffc19b1e87'],
|
||||
['train_data_batch_4', '1620cdf193304f4a92677b695d70d10f'],
|
||||
['train_data_batch_5', '348b3c2fdbb3940c4e9e834affd3b18d'],
|
||||
['train_data_batch_6', '6e765307c242a1b3d7d5ef9139b48945'],
|
||||
['train_data_batch_7', '564926d8cbf8fc4818ba23d2faac7564'],
|
||||
['train_data_batch_8', 'f4755871f718ccb653440b9dd0ebac66'],
|
||||
['train_data_batch_9', 'bb6dd660c38c58552125b1a92f86b5d4'],
|
||||
['train_data_batch_10','8f03f34ac4b42271a294f91bf480f29b'],
|
||||
]
|
||||
valid_list = [
|
||||
['val_data', '3410e3017fdaefba8d5073aaa65e4bd6'],
|
||||
]
|
||||
|
||||
def __init__(self, root, train, transform, use_num_of_class_only=None):
|
||||
self.root = root
|
||||
self.transform = transform
|
||||
self.train = train # training set or valid set
|
||||
if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.')
|
||||
|
||||
if self.train: downloaded_list = self.train_list
|
||||
else : downloaded_list = self.valid_list
|
||||
self.data = []
|
||||
self.targets = []
|
||||
|
||||
# now load the picked numpy arrays
|
||||
for i, (file_name, checksum) in enumerate(downloaded_list):
|
||||
file_path = os.path.join(self.root, file_name)
|
||||
#print ('Load {:}/{:02d}-th : {:}'.format(i, len(downloaded_list), file_path))
|
||||
with open(file_path, 'rb') as f:
|
||||
if sys.version_info[0] == 2:
|
||||
entry = pickle.load(f)
|
||||
else:
|
||||
entry = pickle.load(f, encoding='latin1')
|
||||
self.data.append(entry['data'])
|
||||
self.targets.extend(entry['labels'])
|
||||
self.data = np.vstack(self.data).reshape(-1, 3, 16, 16)
|
||||
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
|
||||
if use_num_of_class_only is not None:
|
||||
assert isinstance(use_num_of_class_only, int) and use_num_of_class_only > 0 and use_num_of_class_only < 1000, 'invalid use_num_of_class_only : {:}'.format(use_num_of_class_only)
|
||||
new_data, new_targets = [], []
|
||||
for I, L in zip(self.data, self.targets):
|
||||
if 1 <= L <= use_num_of_class_only:
|
||||
new_data.append( I )
|
||||
new_targets.append( L )
|
||||
self.data = new_data
|
||||
self.targets = new_targets
|
||||
# self.mean.append(entry['mean'])
|
||||
#self.mean = np.vstack(self.mean).reshape(-1, 3, 16, 16)
|
||||
#self.mean = np.mean(np.mean(np.mean(self.mean, axis=0), axis=1), axis=1)
|
||||
#print ('Mean : {:}'.format(self.mean))
|
||||
#temp = self.data - np.reshape(self.mean, (1, 1, 1, 3))
|
||||
#std_data = np.std(temp, axis=0)
|
||||
#std_data = np.mean(np.mean(std_data, axis=0), axis=0)
|
||||
#print ('Std : {:}'.format(std_data))
|
||||
|
||||
def __getitem__(self, index):
|
||||
img, target = self.data[index], self.targets[index] - 1
|
||||
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if self.transform is not None:
|
||||
img = self.transform(img)
|
||||
|
||||
return img, target
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _check_integrity(self):
|
||||
root = self.root
|
||||
for fentry in (self.train_list + self.valid_list):
|
||||
filename, md5 = fentry[0], fentry[1]
|
||||
fpath = os.path.join(root, filename)
|
||||
if not check_integrity(fpath, md5):
|
||||
return False
|
||||
return True
|
||||
|
||||
#
|
||||
if __name__ == '__main__':
|
||||
train = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True , None)
|
||||
valid = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False, None)
|
||||
|
||||
print ( len(train) )
|
||||
print ( len(valid) )
|
||||
image, label = train[111]
|
||||
trainX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', True , None, 200)
|
||||
validX = ImageNet16('/data02/dongxuanyi/.torch/cifar.python/ImageNet16', False , None, 200)
|
||||
print ( len(trainX) )
|
||||
print ( len(validX) )
|
||||
#import pdb; pdb.set_trace()
|
191
datasets/LandmarkDataset.py
Normal file
191
datasets/LandmarkDataset.py
Normal file
@ -0,0 +1,191 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
from os import path as osp
|
||||
from copy import deepcopy as copy
|
||||
from tqdm import tqdm
|
||||
import warnings, time, random, numpy as np
|
||||
|
||||
from pts_utils import generate_label_map
|
||||
from xvision import denormalize_points
|
||||
from xvision import identity2affine, solve2theta, affine2image
|
||||
from .dataset_utils import pil_loader
|
||||
from .landmark_utils import PointMeta2V
|
||||
from .augmentation_utils import CutOut
|
||||
import torch
|
||||
import torch.utils.data as data
|
||||
|
||||
|
||||
class LandmarkDataset(data.Dataset):
|
||||
|
||||
def __init__(self, transform, sigma, downsample, heatmap_type, shape, use_gray, mean_file, data_indicator, cache_images=None):
|
||||
|
||||
self.transform = transform
|
||||
self.sigma = sigma
|
||||
self.downsample = downsample
|
||||
self.heatmap_type = heatmap_type
|
||||
self.dataset_name = data_indicator
|
||||
self.shape = shape # [H,W]
|
||||
self.use_gray = use_gray
|
||||
assert transform is not None, 'transform : {:}'.format(transform)
|
||||
self.mean_file = mean_file
|
||||
if mean_file is None:
|
||||
self.mean_data = None
|
||||
warnings.warn('LandmarkDataset initialized with mean_data = None')
|
||||
else:
|
||||
assert osp.isfile(mean_file), '{:} is not a file.'.format(mean_file)
|
||||
self.mean_data = torch.load(mean_file)
|
||||
self.reset()
|
||||
self.cutout = None
|
||||
self.cache_images = cache_images
|
||||
print ('The general dataset initialization done : {:}'.format(self))
|
||||
warnings.simplefilter( 'once' )
|
||||
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(point-num={NUM_PTS}, shape={shape}, sigma={sigma}, heatmap_type={heatmap_type}, length={length}, cutout={cutout}, dataset={dataset_name}, mean={mean_file})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
|
||||
def set_cutout(self, length):
|
||||
if length is not None and length >= 1:
|
||||
self.cutout = CutOut( int(length) )
|
||||
else: self.cutout = None
|
||||
|
||||
|
||||
def reset(self, num_pts=-1, boxid='default', only_pts=False):
|
||||
self.NUM_PTS = num_pts
|
||||
if only_pts: return
|
||||
self.length = 0
|
||||
self.datas = []
|
||||
self.labels = []
|
||||
self.NormDistances = []
|
||||
self.BOXID = boxid
|
||||
if self.mean_data is None:
|
||||
self.mean_face = None
|
||||
else:
|
||||
self.mean_face = torch.Tensor(self.mean_data[boxid].copy().T)
|
||||
assert (self.mean_face >= -1).all() and (self.mean_face <= 1).all(), 'mean-{:}-face : {:}'.format(boxid, self.mean_face)
|
||||
#assert self.dataset_name is not None, 'The dataset name is None'
|
||||
|
||||
|
||||
def __len__(self):
|
||||
assert len(self.datas) == self.length, 'The length is not correct : {}'.format(self.length)
|
||||
return self.length
|
||||
|
||||
|
||||
def append(self, data, label, distance):
|
||||
assert osp.isfile(data), 'The image path is not a file : {:}'.format(data)
|
||||
self.datas.append( data ) ; self.labels.append( label )
|
||||
self.NormDistances.append( distance )
|
||||
self.length = self.length + 1
|
||||
|
||||
|
||||
def load_list(self, file_lists, num_pts, boxindicator, normalizeL, reset):
|
||||
if reset: self.reset(num_pts, boxindicator)
|
||||
else : assert self.NUM_PTS == num_pts and self.BOXID == boxindicator, 'The number of point is inconsistance : {:} vs {:}'.format(self.NUM_PTS, num_pts)
|
||||
if isinstance(file_lists, str): file_lists = [file_lists]
|
||||
samples = []
|
||||
for idx, file_path in enumerate(file_lists):
|
||||
print (':::: load list {:}/{:} : {:}'.format(idx, len(file_lists), file_path))
|
||||
xdata = torch.load(file_path)
|
||||
if isinstance(xdata, list) : data = xdata # image or video dataset list
|
||||
elif isinstance(xdata, dict): data = xdata['datas'] # multi-view dataset list
|
||||
else: raise ValueError('Invalid Type Error : {:}'.format( type(xdata) ))
|
||||
samples = samples + data
|
||||
# samples is a dict, where the key is the image-path and the value is the annotation
|
||||
# each annotation is a dict, contains 'points' (3,num_pts), and various box
|
||||
print ('GeneralDataset-V2 : {:} samples'.format(len(samples)))
|
||||
|
||||
#for index, annotation in enumerate(samples):
|
||||
for index in tqdm( range( len(samples) ) ):
|
||||
annotation = samples[index]
|
||||
image_path = annotation['current_frame']
|
||||
points, box = annotation['points'], annotation['box-{:}'.format(boxindicator)]
|
||||
label = PointMeta2V(self.NUM_PTS, points, box, image_path, self.dataset_name)
|
||||
if normalizeL is None: normDistance = None
|
||||
else : normDistance = annotation['normalizeL-{:}'.format(normalizeL)]
|
||||
self.append(image_path, label, normDistance)
|
||||
|
||||
assert len(self.datas) == self.length, 'The length and the data is not right {} vs {}'.format(self.length, len(self.datas))
|
||||
assert len(self.labels) == self.length, 'The length and the labels is not right {} vs {}'.format(self.length, len(self.labels))
|
||||
assert len(self.NormDistances) == self.length, 'The length and the NormDistances is not right {} vs {}'.format(self.length, len(self.NormDistance))
|
||||
print ('Load data done for LandmarkDataset, which has {:} images.'.format(self.length))
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
assert index >= 0 and index < self.length, 'Invalid index : {:}'.format(index)
|
||||
if self.cache_images is not None and self.datas[index] in self.cache_images:
|
||||
image = self.cache_images[ self.datas[index] ].clone()
|
||||
else:
|
||||
image = pil_loader(self.datas[index], self.use_gray)
|
||||
target = self.labels[index].copy()
|
||||
return self._process_(image, target, index)
|
||||
|
||||
|
||||
def _process_(self, image, target, index):
|
||||
|
||||
# transform the image and points
|
||||
image, target, theta = self.transform(image, target)
|
||||
(C, H, W), (height, width) = image.size(), self.shape
|
||||
|
||||
# obtain the visiable indicator vector
|
||||
if target.is_none(): nopoints = True
|
||||
else : nopoints = False
|
||||
if index == -1: __path = None
|
||||
else : __path = self.datas[index]
|
||||
if isinstance(theta, list) or isinstance(theta, tuple):
|
||||
affineImage, heatmaps, mask, norm_trans_points, THETA, transpose_theta = [], [], [], [], [], []
|
||||
for _theta in theta:
|
||||
_affineImage, _heatmaps, _mask, _norm_trans_points, _theta, _transpose_theta \
|
||||
= self.__process_affine(image, target, _theta, nopoints, 'P[{:}]@{:}'.format(index, __path))
|
||||
affineImage.append(_affineImage)
|
||||
heatmaps.append(_heatmaps)
|
||||
mask.append(_mask)
|
||||
norm_trans_points.append(_norm_trans_points)
|
||||
THETA.append(_theta)
|
||||
transpose_theta.append(_transpose_theta)
|
||||
affineImage, heatmaps, mask, norm_trans_points, THETA, transpose_theta = \
|
||||
torch.stack(affineImage), torch.stack(heatmaps), torch.stack(mask), torch.stack(norm_trans_points), torch.stack(THETA), torch.stack(transpose_theta)
|
||||
else:
|
||||
affineImage, heatmaps, mask, norm_trans_points, THETA, transpose_theta = self.__process_affine(image, target, theta, nopoints, 'S[{:}]@{:}'.format(index, __path))
|
||||
|
||||
torch_index = torch.IntTensor([index])
|
||||
torch_nopoints = torch.ByteTensor( [ nopoints ] )
|
||||
torch_shape = torch.IntTensor([H,W])
|
||||
|
||||
return affineImage, heatmaps, mask, norm_trans_points, THETA, transpose_theta, torch_index, torch_nopoints, torch_shape
|
||||
|
||||
|
||||
def __process_affine(self, image, target, theta, nopoints, aux_info=None):
|
||||
image, target, theta = image.clone(), target.copy(), theta.clone()
|
||||
(C, H, W), (height, width) = image.size(), self.shape
|
||||
if nopoints: # do not have label
|
||||
norm_trans_points = torch.zeros((3, self.NUM_PTS))
|
||||
heatmaps = torch.zeros((self.NUM_PTS+1, height//self.downsample, width//self.downsample))
|
||||
mask = torch.ones((self.NUM_PTS+1, 1, 1), dtype=torch.uint8)
|
||||
transpose_theta = identity2affine(False)
|
||||
else:
|
||||
norm_trans_points = apply_affine2point(target.get_points(), theta, (H,W))
|
||||
norm_trans_points = apply_boundary(norm_trans_points)
|
||||
real_trans_points = norm_trans_points.clone()
|
||||
real_trans_points[:2, :] = denormalize_points(self.shape, real_trans_points[:2,:])
|
||||
heatmaps, mask = generate_label_map(real_trans_points.numpy(), height//self.downsample, width//self.downsample, self.sigma, self.downsample, nopoints, self.heatmap_type) # H*W*C
|
||||
heatmaps = torch.from_numpy(heatmaps.transpose((2, 0, 1))).type(torch.FloatTensor)
|
||||
mask = torch.from_numpy(mask.transpose((2, 0, 1))).type(torch.ByteTensor)
|
||||
if self.mean_face is None:
|
||||
#warnings.warn('In LandmarkDataset use identity2affine for transpose_theta because self.mean_face is None.')
|
||||
transpose_theta = identity2affine(False)
|
||||
else:
|
||||
if torch.sum(norm_trans_points[2,:] == 1) < 3:
|
||||
warnings.warn('In LandmarkDataset after transformation, no visiable point, using identity instead. Aux: {:}'.format(aux_info))
|
||||
transpose_theta = identity2affine(False)
|
||||
else:
|
||||
transpose_theta = solve2theta(norm_trans_points, self.mean_face.clone())
|
||||
|
||||
affineImage = affine2image(image, theta, self.shape)
|
||||
if self.cutout is not None: affineImage = self.cutout( affineImage )
|
||||
|
||||
return affineImage, heatmaps, mask, norm_trans_points, theta, transpose_theta
|
46
datasets/SearchDatasetWrap.py
Normal file
46
datasets/SearchDatasetWrap.py
Normal file
@ -0,0 +1,46 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch, copy, random
|
||||
import torch.utils.data as data
|
||||
|
||||
|
||||
class SearchDataset(data.Dataset):
|
||||
|
||||
def __init__(self, name, data, train_split, valid_split, check=True):
|
||||
self.datasetname = name
|
||||
if isinstance(data, (list, tuple)): # new type of SearchDataset
|
||||
assert len(data) == 2, 'invalid length: {:}'.format( len(data) )
|
||||
self.train_data = data[0]
|
||||
self.valid_data = data[1]
|
||||
self.train_split = train_split.copy()
|
||||
self.valid_split = valid_split.copy()
|
||||
self.mode_str = 'V2' # new mode
|
||||
else:
|
||||
self.mode_str = 'V1' # old mode
|
||||
self.data = data
|
||||
self.train_split = train_split.copy()
|
||||
self.valid_split = valid_split.copy()
|
||||
if check:
|
||||
intersection = set(train_split).intersection(set(valid_split))
|
||||
assert len(intersection) == 0, 'the splitted train and validation sets should have no intersection'
|
||||
self.length = len(self.train_split)
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(name={datasetname}, train={tr_L}, valid={val_L}, version={ver})'.format(name=self.__class__.__name__, datasetname=self.datasetname, tr_L=len(self.train_split), val_L=len(self.valid_split), ver=self.mode_str))
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
def __getitem__(self, index):
|
||||
assert index >= 0 and index < self.length, 'invalid index = {:}'.format(index)
|
||||
train_index = self.train_split[index]
|
||||
valid_index = random.choice( self.valid_split )
|
||||
if self.mode_str == 'V1':
|
||||
train_image, train_label = self.data[train_index]
|
||||
valid_image, valid_label = self.data[valid_index]
|
||||
elif self.mode_str == 'V2':
|
||||
train_image, train_label = self.train_data[train_index]
|
||||
valid_image, valid_label = self.valid_data[valid_index]
|
||||
else: raise ValueError('invalid mode : {:}'.format(self.mode_str))
|
||||
return train_image, train_label, valid_image, valid_label
|
5
datasets/__init__.py
Normal file
5
datasets/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .get_dataset_with_transform import get_datasets, get_nas_search_loaders
|
||||
from .SearchDatasetWrap import SearchDataset
|
227
datasets/get_dataset_with_transform.py
Normal file
227
datasets/get_dataset_with_transform.py
Normal file
@ -0,0 +1,227 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import os, sys, torch
|
||||
import os.path as osp
|
||||
import numpy as np
|
||||
import torchvision.datasets as dset
|
||||
import torchvision.transforms as transforms
|
||||
from copy import deepcopy
|
||||
from PIL import Image
|
||||
|
||||
from .DownsampledImageNet import ImageNet16
|
||||
from .SearchDatasetWrap import SearchDataset
|
||||
from config_utils import load_config
|
||||
|
||||
|
||||
Dataset2Class = {'cifar10' : 10,
|
||||
'cifar100': 100,
|
||||
'imagenet-1k-s':1000,
|
||||
'imagenet-1k' : 1000,
|
||||
'ImageNet16' : 1000,
|
||||
'ImageNet16-150': 150,
|
||||
'ImageNet16-120': 120,
|
||||
'ImageNet16-200': 200}
|
||||
|
||||
|
||||
class CUTOUT(object):
|
||||
|
||||
def __init__(self, length):
|
||||
self.length = length
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}(length={length})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def __call__(self, img):
|
||||
h, w = img.size(1), img.size(2)
|
||||
mask = np.ones((h, w), np.float32)
|
||||
y = np.random.randint(h)
|
||||
x = np.random.randint(w)
|
||||
|
||||
y1 = np.clip(y - self.length // 2, 0, h)
|
||||
y2 = np.clip(y + self.length // 2, 0, h)
|
||||
x1 = np.clip(x - self.length // 2, 0, w)
|
||||
x2 = np.clip(x + self.length // 2, 0, w)
|
||||
|
||||
mask[y1: y2, x1: x2] = 0.
|
||||
mask = torch.from_numpy(mask)
|
||||
mask = mask.expand_as(img)
|
||||
img *= mask
|
||||
return img
|
||||
|
||||
|
||||
imagenet_pca = {
|
||||
'eigval': np.asarray([0.2175, 0.0188, 0.0045]),
|
||||
'eigvec': np.asarray([
|
||||
[-0.5675, 0.7192, 0.4009],
|
||||
[-0.5808, -0.0045, -0.8140],
|
||||
[-0.5836, -0.6948, 0.4203],
|
||||
])
|
||||
}
|
||||
|
||||
|
||||
class Lighting(object):
|
||||
def __init__(self, alphastd,
|
||||
eigval=imagenet_pca['eigval'],
|
||||
eigvec=imagenet_pca['eigvec']):
|
||||
self.alphastd = alphastd
|
||||
assert eigval.shape == (3,)
|
||||
assert eigvec.shape == (3, 3)
|
||||
self.eigval = eigval
|
||||
self.eigvec = eigvec
|
||||
|
||||
def __call__(self, img):
|
||||
if self.alphastd == 0.:
|
||||
return img
|
||||
rnd = np.random.randn(3) * self.alphastd
|
||||
rnd = rnd.astype('float32')
|
||||
v = rnd
|
||||
old_dtype = np.asarray(img).dtype
|
||||
v = v * self.eigval
|
||||
v = v.reshape((3, 1))
|
||||
inc = np.dot(self.eigvec, v).reshape((3,))
|
||||
img = np.add(img, inc)
|
||||
if old_dtype == np.uint8:
|
||||
img = np.clip(img, 0, 255)
|
||||
img = Image.fromarray(img.astype(old_dtype), 'RGB')
|
||||
return img
|
||||
|
||||
def __repr__(self):
|
||||
return self.__class__.__name__ + '()'
|
||||
|
||||
|
||||
def get_datasets(name, root, cutout):
|
||||
|
||||
if name == 'cifar10':
|
||||
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
|
||||
std = [x / 255 for x in [63.0, 62.1, 66.7]]
|
||||
elif name == 'cifar100':
|
||||
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
|
||||
std = [x / 255 for x in [68.2, 65.4, 70.4]]
|
||||
elif name.startswith('imagenet-1k'):
|
||||
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
|
||||
elif name.startswith('ImageNet16'):
|
||||
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
|
||||
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
|
||||
else:
|
||||
raise TypeError("Unknow dataset : {:}".format(name))
|
||||
|
||||
# Data Argumentation
|
||||
if name == 'cifar10' or name == 'cifar100':
|
||||
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
||||
if cutout > 0 : lists += [CUTOUT(cutout)]
|
||||
train_transform = transforms.Compose(lists)
|
||||
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
||||
xshape = (1, 3, 32, 32)
|
||||
elif name.startswith('ImageNet16'):
|
||||
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(16, padding=2), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
||||
if cutout > 0 : lists += [CUTOUT(cutout)]
|
||||
train_transform = transforms.Compose(lists)
|
||||
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
||||
xshape = (1, 3, 16, 16)
|
||||
elif name == 'tiered':
|
||||
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
||||
if cutout > 0 : lists += [CUTOUT(cutout)]
|
||||
train_transform = transforms.Compose(lists)
|
||||
test_transform = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std)])
|
||||
xshape = (1, 3, 32, 32)
|
||||
elif name.startswith('imagenet-1k'):
|
||||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||
if name == 'imagenet-1k':
|
||||
xlists = [transforms.RandomResizedCrop(224)]
|
||||
xlists.append(
|
||||
transforms.ColorJitter(
|
||||
brightness=0.4,
|
||||
contrast=0.4,
|
||||
saturation=0.4,
|
||||
hue=0.2))
|
||||
xlists.append( Lighting(0.1))
|
||||
elif name == 'imagenet-1k-s':
|
||||
xlists = [transforms.RandomResizedCrop(224, scale=(0.2, 1.0))]
|
||||
else: raise ValueError('invalid name : {:}'.format(name))
|
||||
xlists.append( transforms.RandomHorizontalFlip(p=0.5) )
|
||||
xlists.append( transforms.ToTensor() )
|
||||
xlists.append( normalize )
|
||||
train_transform = transforms.Compose(xlists)
|
||||
test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
|
||||
xshape = (1, 3, 224, 224)
|
||||
else:
|
||||
raise TypeError("Unknow dataset : {:}".format(name))
|
||||
|
||||
if name == 'cifar10':
|
||||
train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR10 (root, train=False, transform=test_transform , download=True)
|
||||
assert len(train_data) == 50000 and len(test_data) == 10000
|
||||
elif name == 'cifar100':
|
||||
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
|
||||
assert len(train_data) == 50000 and len(test_data) == 10000
|
||||
elif name.startswith('imagenet-1k'):
|
||||
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
|
||||
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
|
||||
assert len(train_data) == 1281167 and len(test_data) == 50000, 'invalid number of images : {:} & {:} vs {:} & {:}'.format(len(train_data), len(test_data), 1281167, 50000)
|
||||
elif name == 'ImageNet16':
|
||||
train_data = ImageNet16(root, True , train_transform)
|
||||
test_data = ImageNet16(root, False, test_transform)
|
||||
assert len(train_data) == 1281167 and len(test_data) == 50000
|
||||
elif name == 'ImageNet16-120':
|
||||
train_data = ImageNet16(root, True , train_transform, 120)
|
||||
test_data = ImageNet16(root, False, test_transform , 120)
|
||||
assert len(train_data) == 151700 and len(test_data) == 6000
|
||||
elif name == 'ImageNet16-150':
|
||||
train_data = ImageNet16(root, True , train_transform, 150)
|
||||
test_data = ImageNet16(root, False, test_transform , 150)
|
||||
assert len(train_data) == 190272 and len(test_data) == 7500
|
||||
elif name == 'ImageNet16-200':
|
||||
train_data = ImageNet16(root, True , train_transform, 200)
|
||||
test_data = ImageNet16(root, False, test_transform , 200)
|
||||
assert len(train_data) == 254775 and len(test_data) == 10000
|
||||
else: raise TypeError("Unknow dataset : {:}".format(name))
|
||||
|
||||
class_num = Dataset2Class[name]
|
||||
return train_data, test_data, xshape, class_num
|
||||
|
||||
|
||||
def get_nas_search_loaders(train_data, valid_data, dataset, config_root, batch_size, workers):
|
||||
if isinstance(batch_size, (list,tuple)):
|
||||
batch, test_batch = batch_size
|
||||
else:
|
||||
batch, test_batch = batch_size, batch_size
|
||||
if dataset == 'cifar10':
|
||||
#split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
||||
cifar_split = load_config('{:}/cifar-split.txt'.format(config_root), None, None)
|
||||
train_split, valid_split = cifar_split.train, cifar_split.valid # search over the proposed training and validation set
|
||||
#logger.log('Load split file from {:}'.format(split_Fpath)) # they are two disjoint groups in the original CIFAR-10 training set
|
||||
# To split data
|
||||
xvalid_data = deepcopy(train_data)
|
||||
if hasattr(xvalid_data, 'transforms'): # to avoid a print issue
|
||||
xvalid_data.transforms = valid_data.transform
|
||||
xvalid_data.transform = deepcopy( valid_data.transform )
|
||||
search_data = SearchDataset(dataset, train_data, train_split, valid_split)
|
||||
# data loader
|
||||
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(xvalid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=workers, pin_memory=True)
|
||||
elif dataset == 'cifar100':
|
||||
cifar100_test_split = load_config('{:}/cifar100-test-split.txt'.format(config_root), None, None)
|
||||
search_train_data = train_data
|
||||
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
|
||||
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), cifar100_test_split.xvalid)
|
||||
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_test_split.xvalid), num_workers=workers, pin_memory=True)
|
||||
elif dataset == 'ImageNet16-120':
|
||||
imagenet_test_split = load_config('{:}/imagenet-16-120-test-split.txt'.format(config_root), None, None)
|
||||
search_train_data = train_data
|
||||
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
|
||||
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), imagenet_test_split.xvalid)
|
||||
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
||||
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_test_split.xvalid), num_workers=workers, pin_memory=True)
|
||||
else:
|
||||
raise ValueError('invalid dataset : {:}'.format(dataset))
|
||||
return search_loader, train_loader, valid_loader
|
||||
|
||||
#if __name__ == '__main__':
|
||||
# train_data, test_data, xshape, class_num = dataset = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1)
|
||||
# import pdb; pdb.set_trace()
|
1
datasets/landmark_utils/__init__.py
Normal file
1
datasets/landmark_utils/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .point_meta import PointMeta2V, apply_affine2point, apply_boundary
|
116
datasets/landmark_utils/point_meta.py
Normal file
116
datasets/landmark_utils/point_meta.py
Normal file
@ -0,0 +1,116 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
import copy, math, torch, numpy as np
|
||||
from xvision import normalize_points
|
||||
from xvision import denormalize_points
|
||||
|
||||
|
||||
class PointMeta():
|
||||
# points : 3 x num_pts (x, y, oculusion)
|
||||
# image_size: original [width, height]
|
||||
def __init__(self, num_point, points, box, image_path, dataset_name):
|
||||
|
||||
self.num_point = num_point
|
||||
if box is not None:
|
||||
assert (isinstance(box, tuple) or isinstance(box, list)) and len(box) == 4
|
||||
self.box = torch.Tensor(box)
|
||||
else: self.box = None
|
||||
if points is None:
|
||||
self.points = points
|
||||
else:
|
||||
assert len(points.shape) == 2 and points.shape[0] == 3 and points.shape[1] == self.num_point, 'The shape of point is not right : {}'.format( points )
|
||||
self.points = torch.Tensor(points.copy())
|
||||
self.image_path = image_path
|
||||
self.datasets = dataset_name
|
||||
|
||||
def __repr__(self):
|
||||
if self.box is None: boxstr = 'None'
|
||||
else : boxstr = 'box=[{:.1f}, {:.1f}, {:.1f}, {:.1f}]'.format(*self.box.tolist())
|
||||
return ('{name}(points={num_point}, '.format(name=self.__class__.__name__, **self.__dict__) + boxstr + ')')
|
||||
|
||||
def get_box(self, return_diagonal=False):
|
||||
if self.box is None: return None
|
||||
if not return_diagonal:
|
||||
return self.box.clone()
|
||||
else:
|
||||
W = (self.box[2]-self.box[0]).item()
|
||||
H = (self.box[3]-self.box[1]).item()
|
||||
return math.sqrt(H*H+W*W)
|
||||
|
||||
def get_points(self, ignore_indicator=False):
|
||||
if ignore_indicator: last = 2
|
||||
else : last = 3
|
||||
if self.points is not None: return self.points.clone()[:last, :]
|
||||
else : return torch.zeros((last, self.num_point))
|
||||
|
||||
def is_none(self):
|
||||
#assert self.box is not None, 'The box should not be None'
|
||||
return self.points is None
|
||||
#if self.box is None: return True
|
||||
#else : return self.points is None
|
||||
|
||||
def copy(self):
|
||||
return copy.deepcopy(self)
|
||||
|
||||
def visiable_pts_num(self):
|
||||
with torch.no_grad():
|
||||
ans = self.points[2,:] > 0
|
||||
ans = torch.sum(ans)
|
||||
ans = ans.item()
|
||||
return ans
|
||||
|
||||
def special_fun(self, indicator):
|
||||
if indicator == '68to49': # For 300W or 300VW, convert the default 68 points to 49 points.
|
||||
assert self.num_point == 68, 'num-point must be 68 vs. {:}'.format(self.num_point)
|
||||
self.num_point = 49
|
||||
out = torch.ones((68), dtype=torch.uint8)
|
||||
out[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,60,64]] = 0
|
||||
if self.points is not None: self.points = self.points.clone()[:, out]
|
||||
else:
|
||||
raise ValueError('Invalid indicator : {:}'.format( indicator ))
|
||||
|
||||
def apply_horizontal_flip(self):
|
||||
#self.points[0, :] = width - self.points[0, :] - 1
|
||||
# Mugsy spefic or Synthetic
|
||||
if self.datasets.startswith('HandsyROT'):
|
||||
ori = np.array(list(range(0, 42)))
|
||||
pos = np.array(list(range(21,42)) + list(range(0,21)))
|
||||
self.points[:, pos] = self.points[:, ori]
|
||||
elif self.datasets.startswith('face68'):
|
||||
ori = np.array(list(range(0, 68)))
|
||||
pos = np.array([17,16,15,14,13,12,11,10, 9, 8,7,6,5,4,3,2,1, 27,26,25,24,23,22,21,20,19,18, 28,29,30,31, 36,35,34,33,32, 46,45,44,43,48,47, 40,39,38,37,42,41, 55,54,53,52,51,50,49,60,59,58,57,56,65,64,63,62,61,68,67,66])-1
|
||||
self.points[:, ori] = self.points[:, pos]
|
||||
else:
|
||||
raise ValueError('Does not support {:}'.format(self.datasets))
|
||||
|
||||
|
||||
|
||||
# shape = (H,W)
|
||||
def apply_affine2point(points, theta, shape):
|
||||
assert points.size(0) == 3, 'invalid points shape : {:}'.format(points.size())
|
||||
with torch.no_grad():
|
||||
ok_points = points[2,:] == 1
|
||||
assert torch.sum(ok_points).item() > 0, 'there is no visiable point'
|
||||
points[:2,:] = normalize_points(shape, points[:2,:])
|
||||
|
||||
norm_trans_points = ok_points.unsqueeze(0).repeat(3, 1).float()
|
||||
|
||||
trans_points, ___ = torch.gesv(points[:, ok_points], theta)
|
||||
|
||||
norm_trans_points[:, ok_points] = trans_points
|
||||
|
||||
return norm_trans_points
|
||||
|
||||
|
||||
|
||||
def apply_boundary(norm_trans_points):
|
||||
with torch.no_grad():
|
||||
norm_trans_points = norm_trans_points.clone()
|
||||
oks = torch.stack((norm_trans_points[0]>-1, norm_trans_points[0]<1, norm_trans_points[1]>-1, norm_trans_points[1]<1, norm_trans_points[2]>0))
|
||||
oks = torch.sum(oks, dim=0) == 5
|
||||
norm_trans_points[2, :] = oks
|
||||
return norm_trans_points
|
20
datasets/test_utils.py
Normal file
20
datasets/test_utils.py
Normal file
@ -0,0 +1,20 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import os
|
||||
|
||||
|
||||
def test_imagenet_data(imagenet):
|
||||
total_length = len(imagenet)
|
||||
assert total_length == 1281166 or total_length == 50000, 'The length of ImageNet is wrong : {}'.format(total_length)
|
||||
map_id = {}
|
||||
for index in range(total_length):
|
||||
path, target = imagenet.imgs[index]
|
||||
folder, image_name = os.path.split(path)
|
||||
_, folder = os.path.split(folder)
|
||||
if folder not in map_id:
|
||||
map_id[folder] = target
|
||||
else:
|
||||
assert map_id[folder] == target, 'Class : {} is not {}'.format(folder, target)
|
||||
assert image_name.find(folder) == 0, '{} is wrong.'.format(path)
|
||||
print ('Check ImageNet Dataset OK')
|
50
environment.yml
Normal file
50
environment.yml
Normal file
@ -0,0 +1,50 @@
|
||||
name: nas-wot
|
||||
channels:
|
||||
- pytorch
|
||||
- defaults
|
||||
dependencies:
|
||||
- _libgcc_mutex=0.1=main
|
||||
- blas=1.0=mkl
|
||||
- ca-certificates=2020.1.1=0
|
||||
- certifi=2020.4.5.1=py38_0
|
||||
- cudatoolkit=10.2.89=hfd86e86_1
|
||||
- freetype=2.9.1=h8a8886c_1
|
||||
- intel-openmp=2020.1=217
|
||||
- jpeg=9b=h024ee3a_2
|
||||
- ld_impl_linux-64=2.33.1=h53a641e_7
|
||||
- libedit=3.1.20181209=hc058e9b_0
|
||||
- libffi=3.3=he6710b0_1
|
||||
- libgcc-ng=9.1.0=hdf63c60_0
|
||||
- libgfortran-ng=7.3.0=hdf63c60_0
|
||||
- libpng=1.6.37=hbc83047_0
|
||||
- libstdcxx-ng=9.1.0=hdf63c60_0
|
||||
- libtiff=4.1.0=h2733197_1
|
||||
- lz4-c=1.9.2=he6710b0_0
|
||||
- mkl=2020.1=217
|
||||
- mkl-service=2.3.0=py38he904b0f_0
|
||||
- mkl_fft=1.0.15=py38ha843d7b_0
|
||||
- mkl_random=1.1.1=py38h0573a6f_0
|
||||
- ncurses=6.2=he6710b0_1
|
||||
- ninja=1.9.0=py38hfd86e86_0
|
||||
- numpy=1.18.1=py38h4f9e942_0
|
||||
- numpy-base=1.18.1=py38hde5b4d6_1
|
||||
- olefile=0.46=py_0
|
||||
- openssl=1.1.1g=h7b6447c_0
|
||||
- pillow=7.1.2=py38hb39fc2d_0
|
||||
- pip=20.0.2=py38_3
|
||||
- python=3.8.3=hcff3b4d_0
|
||||
- pytorch=1.5.0=py3.8_cuda10.2.89_cudnn7.6.5_0
|
||||
- readline=8.0=h7b6447c_0
|
||||
- setuptools=46.4.0=py38_0
|
||||
- six=1.14.0=py38_0
|
||||
- sqlite=3.31.1=h62c20be_1
|
||||
- tk=8.6.8=hbc83047_0
|
||||
- torchvision=0.6.0=py38_cu102
|
||||
- tqdm=4.46.0=py_0
|
||||
- wheel=0.34.2=py38_0
|
||||
- xz=5.2.5=h7b6447c_0
|
||||
- zlib=1.2.11=h7b6447c_3
|
||||
- zstd=1.4.4=h0b5b093_3
|
||||
- pip:
|
||||
- argparse==1.4.0
|
||||
- nas-bench-201==1.3
|
105
models/CifarDenseNet.py
Normal file
105
models/CifarDenseNet.py
Normal file
@ -0,0 +1,105 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
def __init__(self, nChannels, growthRate):
|
||||
super(Bottleneck, self).__init__()
|
||||
interChannels = 4*growthRate
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(interChannels)
|
||||
self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = self.conv2(F.relu(self.bn2(out)))
|
||||
out = torch.cat((x, out), 1)
|
||||
return out
|
||||
|
||||
|
||||
class SingleLayer(nn.Module):
|
||||
def __init__(self, nChannels, growthRate):
|
||||
super(SingleLayer, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, growthRate, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = torch.cat((x, out), 1)
|
||||
return out
|
||||
|
||||
|
||||
class Transition(nn.Module):
|
||||
def __init__(self, nChannels, nOutChannels):
|
||||
super(Transition, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(nChannels)
|
||||
self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv1(F.relu(self.bn1(x)))
|
||||
out = F.avg_pool2d(out, 2)
|
||||
return out
|
||||
|
||||
|
||||
class DenseNet(nn.Module):
|
||||
def __init__(self, growthRate, depth, reduction, nClasses, bottleneck):
|
||||
super(DenseNet, self).__init__()
|
||||
|
||||
if bottleneck: nDenseBlocks = int( (depth-4) / 6 )
|
||||
else : nDenseBlocks = int( (depth-4) / 3 )
|
||||
|
||||
self.message = 'CifarDenseNet : block : {:}, depth : {:}, reduction : {:}, growth-rate = {:}, class = {:}'.format('bottleneck' if bottleneck else 'basic', depth, reduction, growthRate, nClasses)
|
||||
|
||||
nChannels = 2*growthRate
|
||||
self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False)
|
||||
|
||||
self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks*growthRate
|
||||
nOutChannels = int(math.floor(nChannels*reduction))
|
||||
self.trans1 = Transition(nChannels, nOutChannels)
|
||||
|
||||
nChannels = nOutChannels
|
||||
self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks*growthRate
|
||||
nOutChannels = int(math.floor(nChannels*reduction))
|
||||
self.trans2 = Transition(nChannels, nOutChannels)
|
||||
|
||||
nChannels = nOutChannels
|
||||
self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck)
|
||||
nChannels += nDenseBlocks*growthRate
|
||||
|
||||
self.act = nn.Sequential(
|
||||
nn.BatchNorm2d(nChannels), nn.ReLU(inplace=True),
|
||||
nn.AvgPool2d(8))
|
||||
self.fc = nn.Linear(nChannels, nClasses)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck):
|
||||
layers = []
|
||||
for i in range(int(nDenseBlocks)):
|
||||
if bottleneck:
|
||||
layers.append(Bottleneck(nChannels, growthRate))
|
||||
else:
|
||||
layers.append(SingleLayer(nChannels, growthRate))
|
||||
nChannels += growthRate
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, inputs):
|
||||
out = self.conv1( inputs )
|
||||
out = self.trans1(self.dense1(out))
|
||||
out = self.trans2(self.dense2(out))
|
||||
out = self.dense3(out)
|
||||
features = self.act(out)
|
||||
features = features.view(features.size(0), -1)
|
||||
out = self.fc(features)
|
||||
return features, out
|
157
models/CifarResNet.py
Normal file
157
models/CifarResNet.py
Normal file
@ -0,0 +1,157 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
from .SharedUtils import additive_func
|
||||
|
||||
|
||||
class Downsample(nn.Module):
|
||||
|
||||
def __init__(self, nIn, nOut, stride):
|
||||
super(Downsample, self).__init__()
|
||||
assert stride == 2 and nOut == 2*nIn, 'stride:{} IO:{},{}'.format(stride, nIn, nOut)
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=1, stride=1, padding=0, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.avg(x)
|
||||
out = self.conv(x)
|
||||
return out
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, bias=bias)
|
||||
self.bn = nn.BatchNorm2d(nOut)
|
||||
if relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
self.out_dim = nOut
|
||||
self.num_conv = 1
|
||||
|
||||
def forward(self, x):
|
||||
conv = self.conv( x )
|
||||
bn = self.bn( conv )
|
||||
if self.relu: return self.relu( bn )
|
||||
else : return bn
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, True)
|
||||
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, False)
|
||||
if stride == 2:
|
||||
self.downsample = Downsample(inplanes, planes, stride)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.num_conv = 2
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, True)
|
||||
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, True)
|
||||
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, False)
|
||||
if stride == 2:
|
||||
self.downsample = Downsample(inplanes, planes*self.expansion, stride)
|
||||
elif inplanes != planes*self.expansion:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.num_conv = 3
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class CifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, num_classes, zero_init_residual):
|
||||
super(CifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
|
||||
self.message = 'CifarResNet : Block : {:}, Depth : {:}, Layers for each block : {:}'.format(block_name, depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, True) ] )
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
94
models/CifarWideResNet.py
Normal file
94
models/CifarWideResNet.py
Normal file
@ -0,0 +1,94 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class WideBasicblock(nn.Module):
|
||||
def __init__(self, inplanes, planes, stride, dropout=False):
|
||||
super(WideBasicblock, self).__init__()
|
||||
|
||||
self.bn_a = nn.BatchNorm2d(inplanes)
|
||||
self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
||||
|
||||
self.bn_b = nn.BatchNorm2d(planes)
|
||||
if dropout:
|
||||
self.dropout = nn.Dropout2d(p=0.5, inplace=True)
|
||||
else:
|
||||
self.dropout = None
|
||||
self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
|
||||
if inplanes != planes:
|
||||
self.downsample = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
basicblock = self.bn_a(x)
|
||||
basicblock = F.relu(basicblock)
|
||||
basicblock = self.conv_a(basicblock)
|
||||
|
||||
basicblock = self.bn_b(basicblock)
|
||||
basicblock = F.relu(basicblock)
|
||||
if self.dropout is not None:
|
||||
basicblock = self.dropout(basicblock)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x)
|
||||
|
||||
return x + basicblock
|
||||
|
||||
|
||||
class CifarWideResNet(nn.Module):
|
||||
"""
|
||||
ResNet optimized for the Cifar dataset, as specified in
|
||||
https://arxiv.org/abs/1512.03385.pdf
|
||||
"""
|
||||
def __init__(self, depth, widen_factor, num_classes, dropout):
|
||||
super(CifarWideResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
assert (depth - 4) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 4) // 6
|
||||
print ('CifarPreResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks))
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.dropout = dropout
|
||||
self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
|
||||
|
||||
self.message = 'Wide ResNet : depth={:}, widen_factor={:}, class={:}'.format(depth, widen_factor, num_classes)
|
||||
self.inplanes = 16
|
||||
self.stage_1 = self._make_layer(WideBasicblock, 16*widen_factor, layer_blocks, 1)
|
||||
self.stage_2 = self._make_layer(WideBasicblock, 32*widen_factor, layer_blocks, 2)
|
||||
self.stage_3 = self._make_layer(WideBasicblock, 64*widen_factor, layer_blocks, 2)
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(64*widen_factor), nn.ReLU(inplace=True))
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(64*widen_factor, num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride):
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, self.dropout))
|
||||
self.inplanes = planes
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, self.dropout))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv_3x3(x)
|
||||
x = self.stage_1(x)
|
||||
x = self.stage_2(x)
|
||||
x = self.stage_3(x)
|
||||
x = self.lastact(x)
|
||||
x = self.avgpool(x)
|
||||
features = x.view(x.size(0), -1)
|
||||
outs = self.classifier(features)
|
||||
return features, outs
|
101
models/ImageNet_MobileNetV2.py
Normal file
101
models/ImageNet_MobileNetV2.py
Normal file
@ -0,0 +1,101 @@
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
|
||||
self.bn = nn.BatchNorm2d(out_planes)
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv( x )
|
||||
out = self.bn ( out )
|
||||
out = self.relu( out )
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, inp, oup, stride, expand_ratio):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2]
|
||||
|
||||
hidden_dim = int(round(inp * expand_ratio))
|
||||
self.use_res_connect = self.stride == 1 and inp == oup
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# pw
|
||||
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
||||
# pw-linear
|
||||
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
])
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_res_connect:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class MobileNetV2(nn.Module):
|
||||
def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout):
|
||||
super(MobileNetV2, self).__init__()
|
||||
if block_name == 'InvertedResidual':
|
||||
block = InvertedResidual
|
||||
else:
|
||||
raise ValueError('invalid block name : {:}'.format(block_name))
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16 , 1, 1],
|
||||
[6, 24 , 2, 2],
|
||||
[6, 32 , 3, 2],
|
||||
[6, 64 , 4, 2],
|
||||
[6, 96 , 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
|
||||
# building first layer
|
||||
input_channel = int(input_channel * width_mult)
|
||||
self.last_channel = int(last_channel * max(1.0, width_mult))
|
||||
features = [ConvBNReLU(3, input_channel, stride=2)]
|
||||
# building inverted residual blocks
|
||||
for t, c, n, s in inverted_residual_setting:
|
||||
output_channel = int(c * width_mult)
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
||||
input_channel = output_channel
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.last_channel, num_classes),
|
||||
)
|
||||
self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout)
|
||||
|
||||
# weight initialization
|
||||
self.apply( initialize_resnet )
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
172
models/ImageNet_ResNet.py
Normal file
172
models/ImageNet_ResNet.py
Normal file
@ -0,0 +1,172 @@
|
||||
# Deep Residual Learning for Image Recognition, CVPR 2016
|
||||
import torch.nn as nn
|
||||
from .initialization import initialize_resnet
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1, groups=1):
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
|
||||
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
|
||||
super(BasicBlock, self).__init__()
|
||||
if groups != 1 or base_width != 64:
|
||||
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64):
|
||||
super(Bottleneck, self).__init__()
|
||||
width = int(planes * (base_width / 64.)) * groups
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = nn.BatchNorm2d(width)
|
||||
self.conv2 = conv3x3(width, width, stride, groups)
|
||||
self.bn2 = nn.BatchNorm2d(width)
|
||||
self.conv3 = conv1x1(width, planes * self.expansion)
|
||||
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
#planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
|
||||
if block_name == 'BasicBlock' : block= BasicBlock
|
||||
elif block_name == 'Bottleneck': block= Bottleneck
|
||||
else : raise ValueError('invalid block-name : {:}'.format(block_name))
|
||||
|
||||
if not deep_stem:
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
|
||||
nn.BatchNorm2d(64), nn.ReLU(inplace=True))
|
||||
else:
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d( 3, 32, kernel_size=3, stride=2, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(32), nn.ReLU(inplace=True),
|
||||
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(64), nn.ReLU(inplace=True))
|
||||
self.inplanes = 64
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64 , layers[0], stride=1, groups=groups, base_width=width_per_group)
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
self.message = 'block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}'.format(block, layers, deep_stem, num_classes)
|
||||
|
||||
self.apply( initialize_resnet )
|
||||
|
||||
# Zero-initialize the last BN in each residual branch,
|
||||
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
||||
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
nn.init.constant_(m.bn3.weight, 0)
|
||||
elif isinstance(m, BasicBlock):
|
||||
nn.init.constant_(m.bn2.weight, 0)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride, groups, base_width):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
if stride == 2:
|
||||
downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
conv1x1(self.inplanes, planes * block.expansion, 1),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
elif stride == 1:
|
||||
downsample = nn.Sequential(
|
||||
conv1x1(self.inplanes, planes * block.expansion, stride),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
else: raise ValueError('invalid stride [{:}] for downsample'.format(stride))
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample, groups, base_width))
|
||||
self.inplanes = planes * block.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, 1, None, groups, base_width))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.fc(features)
|
||||
|
||||
return features, logits
|
34
models/SharedUtils.py
Normal file
34
models/SharedUtils.py
Normal file
@ -0,0 +1,34 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def additive_func(A, B):
|
||||
assert A.dim() == B.dim() and A.size(0) == B.size(0), '{:} vs {:}'.format(A.size(), B.size())
|
||||
C = min(A.size(1), B.size(1))
|
||||
if A.size(1) == B.size(1):
|
||||
return A + B
|
||||
elif A.size(1) < B.size(1):
|
||||
out = B.clone()
|
||||
out[:,:C] += A
|
||||
return out
|
||||
else:
|
||||
out = A.clone()
|
||||
out[:,:C] += B
|
||||
return out
|
||||
|
||||
|
||||
def change_key(key, value):
|
||||
def func(m):
|
||||
if hasattr(m, key):
|
||||
setattr(m, key, value)
|
||||
return func
|
||||
|
||||
|
||||
def parse_channel_info(xstring):
|
||||
blocks = xstring.split(' ')
|
||||
blocks = [x.split('-') for x in blocks]
|
||||
blocks = [[int(_) for _ in x] for x in blocks]
|
||||
return blocks
|
185
models/__init__.py
Normal file
185
models/__init__.py
Normal file
@ -0,0 +1,185 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from os import path as osp
|
||||
from typing import List, Text
|
||||
import torch
|
||||
|
||||
__all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \
|
||||
'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \
|
||||
'CellStructure', 'CellArchitectures'
|
||||
]
|
||||
|
||||
# useful modules
|
||||
from config_utils import dict2config
|
||||
from .SharedUtils import change_key
|
||||
from .cell_searchs import CellStructure, CellArchitectures
|
||||
|
||||
|
||||
# Cell-based NAS Models
|
||||
def get_cell_based_tiny_net(config):
|
||||
if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict
|
||||
super_type = getattr(config, 'super_type', 'basic')
|
||||
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM']
|
||||
if super_type == 'basic' and config.name in group_names:
|
||||
from .cell_searchs import nas201_super_nets as nas_super_nets
|
||||
try:
|
||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
|
||||
except:
|
||||
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
|
||||
elif super_type == 'nasnet-super':
|
||||
from .cell_searchs import nasnet_super_nets as nas_super_nets
|
||||
return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
|
||||
config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats)
|
||||
elif config.name == 'infer.tiny':
|
||||
from .cell_infers import TinyNetwork
|
||||
if hasattr(config, 'genotype'):
|
||||
genotype = config.genotype
|
||||
elif hasattr(config, 'arch_str'):
|
||||
genotype = CellStructure.str2structure(config.arch_str)
|
||||
else: raise ValueError('Can not find genotype from this config : {:}'.format(config))
|
||||
return TinyNetwork(config.C, config.N, genotype, config.num_classes)
|
||||
elif config.name == 'infer.shape.tiny':
|
||||
from .shape_infers import DynamicShapeTinyNet
|
||||
if isinstance(config.channels, str):
|
||||
channels = tuple([int(x) for x in config.channels.split(':')])
|
||||
else: channels = config.channels
|
||||
genotype = CellStructure.str2structure(config.genotype)
|
||||
return DynamicShapeTinyNet(channels, genotype, config.num_classes)
|
||||
elif config.name == 'infer.nasnet-cifar':
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise ValueError('invalid network name : {:}'.format(config.name))
|
||||
|
||||
|
||||
# obtain the search space, i.e., a dict mapping the operation name into a python-function for this op
|
||||
def get_search_spaces(xtype, name) -> List[Text]:
|
||||
if xtype == 'cell':
|
||||
from .cell_operations import SearchSpaceNames
|
||||
assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys())
|
||||
return SearchSpaceNames[name]
|
||||
else:
|
||||
raise ValueError('invalid search-space type is {:}'.format(xtype))
|
||||
|
||||
|
||||
def get_cifar_models(config, extra_path=None):
|
||||
super_type = getattr(config, 'super_type', 'basic')
|
||||
if super_type == 'basic':
|
||||
from .CifarResNet import CifarResNet
|
||||
from .CifarDenseNet import DenseNet
|
||||
from .CifarWideResNet import CifarWideResNet
|
||||
if config.arch == 'resnet':
|
||||
return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual)
|
||||
elif config.arch == 'densenet':
|
||||
return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck)
|
||||
elif config.arch == 'wideresnet':
|
||||
return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout)
|
||||
else:
|
||||
raise ValueError('invalid module type : {:}'.format(config.arch))
|
||||
elif super_type.startswith('infer'):
|
||||
from .shape_infers import InferWidthCifarResNet
|
||||
from .shape_infers import InferDepthCifarResNet
|
||||
from .shape_infers import InferCifarResNet
|
||||
from .cell_infers import NASNetonCIFAR
|
||||
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
|
||||
infer_mode = super_type.split('-')[1]
|
||||
if infer_mode == 'width':
|
||||
return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual)
|
||||
elif infer_mode == 'depth':
|
||||
return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual)
|
||||
elif infer_mode == 'shape':
|
||||
return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual)
|
||||
elif infer_mode == 'nasnet.cifar':
|
||||
genotype = config.genotype
|
||||
if extra_path is not None: # reload genotype by extra_path
|
||||
if not osp.isfile(extra_path): raise ValueError('invalid extra_path : {:}'.format(extra_path))
|
||||
xdata = torch.load(extra_path)
|
||||
current_epoch = xdata['epoch']
|
||||
genotype = xdata['genotypes'][current_epoch-1]
|
||||
C = config.C if hasattr(config, 'C') else config.ichannel
|
||||
N = config.N if hasattr(config, 'N') else config.layers
|
||||
return NASNetonCIFAR(C, N, config.stem_multi, config.class_num, genotype, config.auxiliary)
|
||||
else:
|
||||
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
|
||||
else:
|
||||
raise ValueError('invalid super-type : {:}'.format(super_type))
|
||||
|
||||
|
||||
def get_imagenet_models(config):
|
||||
super_type = getattr(config, 'super_type', 'basic')
|
||||
if super_type == 'basic':
|
||||
from .ImageNet_ResNet import ResNet
|
||||
from .ImageNet_MobileNetV2 import MobileNetV2
|
||||
if config.arch == 'resnet':
|
||||
return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group)
|
||||
elif config.arch == 'mobilenet_v2':
|
||||
return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout)
|
||||
else:
|
||||
raise ValueError('invalid arch : {:}'.format( config.arch ))
|
||||
elif super_type.startswith('infer'): # NAS searched architecture
|
||||
assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type)
|
||||
infer_mode = super_type.split('-')[1]
|
||||
if infer_mode == 'shape':
|
||||
from .shape_infers import InferImagenetResNet
|
||||
from .shape_infers import InferMobileNetV2
|
||||
if config.arch == 'resnet':
|
||||
return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual)
|
||||
elif config.arch == "MobileNetV2":
|
||||
return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout)
|
||||
else:
|
||||
raise ValueError('invalid arch-mode : {:}'.format(config.arch))
|
||||
else:
|
||||
raise ValueError('invalid infer-mode : {:}'.format(infer_mode))
|
||||
else:
|
||||
raise ValueError('invalid super-type : {:}'.format(super_type))
|
||||
|
||||
|
||||
# Try to obtain the network by config.
|
||||
def obtain_model(config, extra_path=None):
|
||||
if config.dataset == 'cifar':
|
||||
return get_cifar_models(config, extra_path)
|
||||
elif config.dataset == 'imagenet':
|
||||
return get_imagenet_models(config)
|
||||
else:
|
||||
raise ValueError('invalid dataset in the model config : {:}'.format(config))
|
||||
|
||||
|
||||
def obtain_search_model(config):
|
||||
if config.dataset == 'cifar':
|
||||
if config.arch == 'resnet':
|
||||
from .shape_searchs import SearchWidthCifarResNet
|
||||
from .shape_searchs import SearchDepthCifarResNet
|
||||
from .shape_searchs import SearchShapeCifarResNet
|
||||
if config.search_mode == 'width':
|
||||
return SearchWidthCifarResNet(config.module, config.depth, config.class_num)
|
||||
elif config.search_mode == 'depth':
|
||||
return SearchDepthCifarResNet(config.module, config.depth, config.class_num)
|
||||
elif config.search_mode == 'shape':
|
||||
return SearchShapeCifarResNet(config.module, config.depth, config.class_num)
|
||||
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
|
||||
elif config.arch == 'simres':
|
||||
from .shape_searchs import SearchWidthSimResNet
|
||||
if config.search_mode == 'width':
|
||||
return SearchWidthSimResNet(config.depth, config.class_num)
|
||||
else: raise ValueError('invalid search mode : {:}'.format(config.search_mode))
|
||||
else:
|
||||
raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset))
|
||||
elif config.dataset == 'imagenet':
|
||||
from .shape_searchs import SearchShapeImagenetResNet
|
||||
assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode )
|
||||
if config.arch == 'resnet':
|
||||
return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num)
|
||||
else:
|
||||
raise ValueError('invalid model config : {:}'.format(config))
|
||||
else:
|
||||
raise ValueError('invalid dataset in the model config : {:}'.format(config))
|
||||
|
||||
|
||||
def load_net_from_checkpoint(checkpoint):
|
||||
assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint)
|
||||
checkpoint = torch.load(checkpoint)
|
||||
model_config = dict2config(checkpoint['model-config'], None)
|
||||
model = obtain_model(model_config)
|
||||
model.load_state_dict(checkpoint['base-model'])
|
||||
return model
|
5
models/cell_infers/__init__.py
Normal file
5
models/cell_infers/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .tiny_network import TinyNetwork
|
||||
from .nasnet_cifar import NASNetonCIFAR
|
120
models/cell_infers/cells.py
Normal file
120
models/cell_infers/cells.py
Normal file
@ -0,0 +1,120 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
|
||||
# Cell for NAS-Bench-201
|
||||
class InferCell(nn.Module):
|
||||
|
||||
def __init__(self, genotype, C_in, C_out, stride):
|
||||
super(InferCell, self).__init__()
|
||||
|
||||
self.layers = nn.ModuleList()
|
||||
self.node_IN = []
|
||||
self.node_IX = []
|
||||
self.genotype = deepcopy(genotype)
|
||||
for i in range(1, len(genotype)):
|
||||
node_info = genotype[i-1]
|
||||
cur_index = []
|
||||
cur_innod = []
|
||||
for (op_name, op_in) in node_info:
|
||||
if op_in == 0:
|
||||
layer = OPS[op_name](C_in , C_out, stride, True, True)
|
||||
else:
|
||||
layer = OPS[op_name](C_out, C_out, 1, True, True)
|
||||
cur_index.append( len(self.layers) )
|
||||
cur_innod.append( op_in )
|
||||
self.layers.append( layer )
|
||||
self.node_IX.append( cur_index )
|
||||
self.node_IN.append( cur_innod )
|
||||
self.nodes = len(genotype)
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
|
||||
def extra_repr(self):
|
||||
string = 'info :: nodes={nodes}, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
|
||||
laystr = []
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
|
||||
y = ['I{:}-L{:}'.format(_ii, _il) for _il, _ii in zip(node_layers, node_innods)]
|
||||
x = '{:}<-({:})'.format(i+1, ','.join(y))
|
||||
laystr.append( x )
|
||||
return string + ', [{:}]'.format( ' | '.join(laystr) ) + ', {:}'.format(self.genotype.tostr())
|
||||
|
||||
def forward(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i, (node_layers, node_innods) in enumerate(zip(self.node_IX,self.node_IN)):
|
||||
node_feature = sum( self.layers[_il](nodes[_ii]) for _il, _ii in zip(node_layers, node_innods) )
|
||||
nodes.append( node_feature )
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
class NASNetInferCell(nn.Module):
|
||||
|
||||
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
|
||||
super(NASNetInferCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
|
||||
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
|
||||
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
|
||||
|
||||
if not reduction:
|
||||
nodes, concats = genotype['normal'], genotype['normal_concat']
|
||||
else:
|
||||
nodes, concats = genotype['reduce'], genotype['reduce_concat']
|
||||
self._multiplier = len(concats)
|
||||
self._concats = concats
|
||||
self._steps = len(nodes)
|
||||
self._nodes = nodes
|
||||
self.edges = nn.ModuleDict()
|
||||
for i, node in enumerate(nodes):
|
||||
for in_node in node:
|
||||
name, j = in_node[0], in_node[1]
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
node_str = '{:}<-{:}'.format(i+2, j)
|
||||
self.edges[node_str] = OPS[name](C, C, stride, affine, track_running_stats)
|
||||
|
||||
# [TODO] to support drop_prob in this function..
|
||||
def forward(self, s0, s1, unused_drop_prob):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i, node in enumerate(self._nodes):
|
||||
clist = []
|
||||
for in_node in node:
|
||||
name, j = in_node[0], in_node[1]
|
||||
node_str = '{:}<-{:}'.format(i+2, j)
|
||||
op = self.edges[ node_str ]
|
||||
clist.append( op(states[j]) )
|
||||
states.append( sum(clist) )
|
||||
return torch.cat([states[x] for x in self._concats], dim=1)
|
||||
|
||||
|
||||
class AuxiliaryHeadCIFAR(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes):
|
||||
"""assuming input size 8x8"""
|
||||
super(AuxiliaryHeadCIFAR, self).__init__()
|
||||
self.features = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
|
||||
nn.Conv2d(C, 128, 1, bias=False),
|
||||
nn.BatchNorm2d(128),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(128, 768, 2, bias=False),
|
||||
nn.BatchNorm2d(768),
|
||||
nn.ReLU(inplace=True)
|
||||
)
|
||||
self.classifier = nn.Linear(768, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.features(x)
|
||||
x = self.classifier(x.view(x.size(0),-1))
|
||||
return x
|
71
models/cell_infers/nasnet_cifar.py
Normal file
71
models/cell_infers/nasnet_cifar.py
Normal file
@ -0,0 +1,71 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetonCIFAR(nn.Module):
|
||||
|
||||
def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True):
|
||||
super(NASNetonCIFAR, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C*stem_multiplier))
|
||||
|
||||
# config for each layer
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
|
||||
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
|
||||
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
|
||||
self.auxiliary_index = None
|
||||
self.auxiliary_head = None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
|
||||
self.cells.append( cell )
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction
|
||||
if reduction and C_curr == C*4 and auxiliary:
|
||||
self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
|
||||
self.auxiliary_index = index
|
||||
self._Layer = len(self.cells)
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.drop_path_prob = -1
|
||||
|
||||
def update_drop_path(self, drop_path_prob):
|
||||
self.drop_path_prob = drop_path_prob
|
||||
|
||||
def auxiliary_param(self):
|
||||
if self.auxiliary_head is None: return []
|
||||
else: return list( self.auxiliary_head.parameters() )
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
stem_feature, logits_aux = self.stem(inputs), None
|
||||
cell_results = [stem_feature, stem_feature]
|
||||
for i, cell in enumerate(self.cells):
|
||||
cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
|
||||
cell_results.append( cell_feature )
|
||||
if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
|
||||
logits_aux = self.auxiliary_head( cell_results[-1] )
|
||||
out = self.lastact(cell_results[-1])
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
if logits_aux is None: return out, logits
|
||||
else: return out, [logits, logits_aux]
|
58
models/cell_infers/tiny_network.py
Normal file
58
models/cell_infers/tiny_network.py
Normal file
@ -0,0 +1,58 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .cells import InferCell
|
||||
|
||||
|
||||
# The macro structure for architectures in NAS-Bench-201
|
||||
class TinyNetwork(nn.Module):
|
||||
|
||||
def __init__(self, C, N, genotype, num_classes):
|
||||
super(TinyNetwork, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev = C
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2, True)
|
||||
else:
|
||||
cell = InferCell(genotype, C_prev, C_curr, 1)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self._Layer= len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
297
models/cell_operations.py
Normal file
297
models/cell_operations.py
Normal file
@ -0,0 +1,297 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames']
|
||||
|
||||
OPS = {
|
||||
'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride),
|
||||
'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats),
|
||||
'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats),
|
||||
'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats),
|
||||
'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
|
||||
'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats),
|
||||
'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
|
||||
'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats),
|
||||
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
|
||||
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
|
||||
'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
|
||||
}
|
||||
|
||||
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
|
||||
NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
|
||||
DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3']
|
||||
|
||||
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
|
||||
'nas-bench-201': NAS_BENCH_201,
|
||||
'darts' : DARTS_SPACE}
|
||||
|
||||
|
||||
class ReLUConvBN(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
||||
super(ReLUConvBN, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
|
||||
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class SepConv(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
||||
super(SepConv, self).__init__()
|
||||
self.op = nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False),
|
||||
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class DualSepConv(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True):
|
||||
super(DualSepConv, self).__init__()
|
||||
self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats)
|
||||
self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.op_a(x)
|
||||
x = self.op_b(x)
|
||||
return x
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
|
||||
def __init__(self, inplanes, planes, stride, affine=True):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine)
|
||||
self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine)
|
||||
if stride == 2:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
|
||||
nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
|
||||
elif inplanes != planes:
|
||||
self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.in_dim = inplanes
|
||||
self.out_dim = planes
|
||||
self.stride = stride
|
||||
self.num_conv = 2
|
||||
|
||||
def extra_repr(self):
|
||||
string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__)
|
||||
return string
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
return residual + basicblock
|
||||
|
||||
|
||||
class POOLING(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True):
|
||||
super(POOLING, self).__init__()
|
||||
if C_in == C_out:
|
||||
self.preprocess = None
|
||||
else:
|
||||
self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats)
|
||||
if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
|
||||
elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1)
|
||||
else : raise ValueError('Invalid mode={:} in POOLING'.format(mode))
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.preprocess: x = self.preprocess(inputs)
|
||||
else : x = inputs
|
||||
return self.op(x)
|
||||
|
||||
|
||||
class Identity(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(Identity, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x
|
||||
|
||||
|
||||
class Zero(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, stride):
|
||||
super(Zero, self).__init__()
|
||||
self.C_in = C_in
|
||||
self.C_out = C_out
|
||||
self.stride = stride
|
||||
self.is_zero = True
|
||||
|
||||
def forward(self, x):
|
||||
if self.C_in == self.C_out:
|
||||
if self.stride == 1: return x.mul(0.)
|
||||
else : return x[:,:,::self.stride,::self.stride].mul(0.)
|
||||
else:
|
||||
shape = list(x.shape)
|
||||
shape[1] = self.C_out
|
||||
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
|
||||
return zeros
|
||||
|
||||
def extra_repr(self):
|
||||
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|
||||
|
||||
|
||||
class FactorizedReduce(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, stride, affine, track_running_stats):
|
||||
super(FactorizedReduce, self).__init__()
|
||||
self.stride = stride
|
||||
self.C_in = C_in
|
||||
self.C_out = C_out
|
||||
self.relu = nn.ReLU(inplace=False)
|
||||
if stride == 2:
|
||||
#assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
|
||||
C_outs = [C_out // 2, C_out - C_out // 2]
|
||||
self.convs = nn.ModuleList()
|
||||
for i in range(2):
|
||||
self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) )
|
||||
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
|
||||
elif stride == 1:
|
||||
self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False)
|
||||
else:
|
||||
raise ValueError('Invalid stride : {:}'.format(stride))
|
||||
self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats)
|
||||
|
||||
def forward(self, x):
|
||||
if self.stride == 2:
|
||||
x = self.relu(x)
|
||||
y = self.pad(x)
|
||||
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
|
||||
else:
|
||||
out = self.conv(x)
|
||||
out = self.bn(out)
|
||||
return out
|
||||
|
||||
def extra_repr(self):
|
||||
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
|
||||
|
||||
|
||||
# Auto-ReID: Searching for a Part-Aware ConvNet for Person Re-Identification, ICCV 2019
|
||||
class PartAwareOp(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, stride, part=4):
|
||||
super().__init__()
|
||||
self.part = 4
|
||||
self.hidden = C_in // 3
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.local_conv_list = nn.ModuleList()
|
||||
for i in range(self.part):
|
||||
self.local_conv_list.append(
|
||||
nn.Sequential(nn.ReLU(), nn.Conv2d(C_in, self.hidden, 1), nn.BatchNorm2d(self.hidden, affine=True))
|
||||
)
|
||||
self.W_K = nn.Linear(self.hidden, self.hidden)
|
||||
self.W_Q = nn.Linear(self.hidden, self.hidden)
|
||||
|
||||
if stride == 2 : self.last = FactorizedReduce(C_in + self.hidden, C_out, 2)
|
||||
elif stride == 1: self.last = FactorizedReduce(C_in + self.hidden, C_out, 1)
|
||||
else: raise ValueError('Invalid Stride : {:}'.format(stride))
|
||||
|
||||
def forward(self, x):
|
||||
batch, C, H, W = x.size()
|
||||
assert H >= self.part, 'input size too small : {:} vs {:}'.format(x.shape, self.part)
|
||||
IHs = [0]
|
||||
for i in range(self.part): IHs.append( min(H, int((i+1)*(float(H)/self.part))) )
|
||||
local_feat_list = []
|
||||
for i in range(self.part):
|
||||
feature = x[:, :, IHs[i]:IHs[i+1], :]
|
||||
xfeax = self.avg_pool(feature)
|
||||
xfea = self.local_conv_list[i]( xfeax )
|
||||
local_feat_list.append( xfea )
|
||||
part_feature = torch.cat(local_feat_list, dim=2).view(batch, -1, self.part)
|
||||
part_feature = part_feature.transpose(1,2).contiguous()
|
||||
part_K = self.W_K(part_feature)
|
||||
part_Q = self.W_Q(part_feature).transpose(1,2).contiguous()
|
||||
weight_att = torch.bmm(part_K, part_Q)
|
||||
attention = torch.softmax(weight_att, dim=2)
|
||||
aggreateF = torch.bmm(attention, part_feature).transpose(1,2).contiguous()
|
||||
features = []
|
||||
for i in range(self.part):
|
||||
feature = aggreateF[:, :, i:i+1].expand(batch, self.hidden, IHs[i+1]-IHs[i])
|
||||
feature = feature.view(batch, self.hidden, IHs[i+1]-IHs[i], 1)
|
||||
features.append( feature )
|
||||
features = torch.cat(features, dim=2).expand(batch, self.hidden, H, W)
|
||||
final_fea = torch.cat((x,features), dim=1)
|
||||
outputs = self.last( final_fea )
|
||||
return outputs
|
||||
|
||||
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
class GDAS_Reduction_Cell(nn.Module):
|
||||
|
||||
def __init__(self, C_prev_prev, C_prev, C, reduction_prev, multiplier, affine, track_running_stats):
|
||||
super(GDAS_Reduction_Cell, self).__init__()
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, 2, affine, track_running_stats)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, affine, track_running_stats)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, affine, track_running_stats)
|
||||
self.multiplier = multiplier
|
||||
|
||||
self.reduction = True
|
||||
self.ops1 = nn.ModuleList(
|
||||
[nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
|
||||
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True)),
|
||||
nn.Sequential(
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, (1, 3), stride=(1, 2), padding=(0, 1), groups=8, bias=False),
|
||||
nn.Conv2d(C, C, (3, 1), stride=(2, 1), padding=(1, 0), groups=8, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True),
|
||||
nn.ReLU(inplace=False),
|
||||
nn.Conv2d(C, C, 1, stride=1, padding=0, bias=False),
|
||||
nn.BatchNorm2d(C, affine=True))])
|
||||
|
||||
self.ops2 = nn.ModuleList(
|
||||
[nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(C, affine=True)),
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(C, affine=True))])
|
||||
|
||||
def forward(self, s0, s1, drop_prob = -1):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
X0 = self.ops1[0] (s0)
|
||||
X1 = self.ops1[1] (s1)
|
||||
if self.training and drop_prob > 0.:
|
||||
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
|
||||
|
||||
#X2 = self.ops2[0] (X0+X1)
|
||||
X2 = self.ops2[0] (s0)
|
||||
X3 = self.ops2[1] (s1)
|
||||
if self.training and drop_prob > 0.:
|
||||
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
|
||||
return torch.cat([X0, X1, X2, X3], dim=1)
|
24
models/cell_searchs/__init__.py
Normal file
24
models/cell_searchs/__init__.py
Normal file
@ -0,0 +1,24 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
# The macro structure is defined in NAS-Bench-201
|
||||
from .search_model_darts import TinyNetworkDarts
|
||||
from .search_model_gdas import TinyNetworkGDAS
|
||||
from .search_model_setn import TinyNetworkSETN
|
||||
from .search_model_enas import TinyNetworkENAS
|
||||
from .search_model_random import TinyNetworkRANDOM
|
||||
from .genotypes import Structure as CellStructure, architectures as CellArchitectures
|
||||
# NASNet-based macro structure
|
||||
from .search_model_gdas_nasnet import NASNetworkGDAS
|
||||
from .search_model_darts_nasnet import NASNetworkDARTS
|
||||
|
||||
|
||||
nas201_super_nets = {'DARTS-V1': TinyNetworkDarts,
|
||||
"DARTS-V2": TinyNetworkDarts,
|
||||
"GDAS": TinyNetworkGDAS,
|
||||
"SETN": TinyNetworkSETN,
|
||||
"ENAS": TinyNetworkENAS,
|
||||
"RANDOM": TinyNetworkRANDOM}
|
||||
|
||||
nasnet_super_nets = {"GDAS": NASNetworkGDAS,
|
||||
"DARTS": NASNetworkDARTS}
|
12
models/cell_searchs/_test_module.py
Normal file
12
models/cell_searchs/_test_module.py
Normal file
@ -0,0 +1,12 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
from search_model_enas_utils import Controller
|
||||
|
||||
def main():
|
||||
controller = Controller(6, 4)
|
||||
predictions = controller()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
199
models/cell_searchs/genotypes.py
Normal file
199
models/cell_searchs/genotypes.py
Normal file
@ -0,0 +1,199 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
|
||||
def get_combination(space, num):
|
||||
combs = []
|
||||
for i in range(num):
|
||||
if i == 0:
|
||||
for func in space:
|
||||
combs.append( [(func, i)] )
|
||||
else:
|
||||
new_combs = []
|
||||
for string in combs:
|
||||
for func in space:
|
||||
xstring = string + [(func, i)]
|
||||
new_combs.append( xstring )
|
||||
combs = new_combs
|
||||
return combs
|
||||
|
||||
|
||||
|
||||
class Structure:
|
||||
|
||||
def __init__(self, genotype):
|
||||
assert isinstance(genotype, list) or isinstance(genotype, tuple), 'invalid class of genotype : {:}'.format(type(genotype))
|
||||
self.node_num = len(genotype) + 1
|
||||
self.nodes = []
|
||||
self.node_N = []
|
||||
for idx, node_info in enumerate(genotype):
|
||||
assert isinstance(node_info, list) or isinstance(node_info, tuple), 'invalid class of node_info : {:}'.format(type(node_info))
|
||||
assert len(node_info) >= 1, 'invalid length : {:}'.format(len(node_info))
|
||||
for node_in in node_info:
|
||||
assert isinstance(node_in, list) or isinstance(node_in, tuple), 'invalid class of in-node : {:}'.format(type(node_in))
|
||||
assert len(node_in) == 2 and node_in[1] <= idx, 'invalid in-node : {:}'.format(node_in)
|
||||
self.node_N.append( len(node_info) )
|
||||
self.nodes.append( tuple(deepcopy(node_info)) )
|
||||
|
||||
def tolist(self, remove_str):
|
||||
# convert this class to the list, if remove_str is 'none', then remove the 'none' operation.
|
||||
# note that we re-order the input node in this function
|
||||
# return the-genotype-list and success [if unsuccess, it is not a connectivity]
|
||||
genotypes = []
|
||||
for node_info in self.nodes:
|
||||
node_info = list( node_info )
|
||||
node_info = sorted(node_info, key=lambda x: (x[1], x[0]))
|
||||
node_info = tuple(filter(lambda x: x[0] != remove_str, node_info))
|
||||
if len(node_info) == 0: return None, False
|
||||
genotypes.append( node_info )
|
||||
return genotypes, True
|
||||
|
||||
def node(self, index):
|
||||
assert index > 0 and index <= len(self), 'invalid index={:} < {:}'.format(index, len(self))
|
||||
return self.nodes[index]
|
||||
|
||||
def tostr(self):
|
||||
strings = []
|
||||
for node_info in self.nodes:
|
||||
string = '|'.join([x[0]+'~{:}'.format(x[1]) for x in node_info])
|
||||
string = '|{:}|'.format(string)
|
||||
strings.append( string )
|
||||
return '+'.join(strings)
|
||||
|
||||
def check_valid(self):
|
||||
nodes = {0: True}
|
||||
for i, node_info in enumerate(self.nodes):
|
||||
sums = []
|
||||
for op, xin in node_info:
|
||||
if op == 'none' or nodes[xin] is False: x = False
|
||||
else: x = True
|
||||
sums.append( x )
|
||||
nodes[i+1] = sum(sums) > 0
|
||||
return nodes[len(self.nodes)]
|
||||
|
||||
def to_unique_str(self, consider_zero=False):
|
||||
# this is used to identify the isomorphic cell, which rerquires the prior knowledge of operation
|
||||
# two operations are special, i.e., none and skip_connect
|
||||
nodes = {0: '0'}
|
||||
for i_node, node_info in enumerate(self.nodes):
|
||||
cur_node = []
|
||||
for op, xin in node_info:
|
||||
if consider_zero is None:
|
||||
x = '('+nodes[xin]+')' + '@{:}'.format(op)
|
||||
elif consider_zero:
|
||||
if op == 'none' or nodes[xin] == '#': x = '#' # zero
|
||||
elif op == 'skip_connect': x = nodes[xin]
|
||||
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
|
||||
else:
|
||||
if op == 'skip_connect': x = nodes[xin]
|
||||
else: x = '('+nodes[xin]+')' + '@{:}'.format(op)
|
||||
cur_node.append(x)
|
||||
nodes[i_node+1] = '+'.join( sorted(cur_node) )
|
||||
return nodes[ len(self.nodes) ]
|
||||
|
||||
def check_valid_op(self, op_names):
|
||||
for node_info in self.nodes:
|
||||
for inode_edge in node_info:
|
||||
#assert inode_edge[0] in op_names, 'invalid op-name : {:}'.format(inode_edge[0])
|
||||
if inode_edge[0] not in op_names: return False
|
||||
return True
|
||||
|
||||
def __repr__(self):
|
||||
return ('{name}({node_num} nodes with {node_info})'.format(name=self.__class__.__name__, node_info=self.tostr(), **self.__dict__))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.nodes) + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.nodes[index]
|
||||
|
||||
@staticmethod
|
||||
def str2structure(xstr):
|
||||
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
|
||||
nodestrs = xstr.split('+')
|
||||
genotypes = []
|
||||
for i, node_str in enumerate(nodestrs):
|
||||
inputs = list(filter(lambda x: x != '', node_str.split('|')))
|
||||
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
|
||||
inputs = ( xi.split('~') for xi in inputs )
|
||||
input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs)
|
||||
genotypes.append( input_infos )
|
||||
return Structure( genotypes )
|
||||
|
||||
@staticmethod
|
||||
def str2fullstructure(xstr, default_name='none'):
|
||||
assert isinstance(xstr, str), 'must take string (not {:}) as input'.format(type(xstr))
|
||||
nodestrs = xstr.split('+')
|
||||
genotypes = []
|
||||
for i, node_str in enumerate(nodestrs):
|
||||
inputs = list(filter(lambda x: x != '', node_str.split('|')))
|
||||
for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput)
|
||||
inputs = ( xi.split('~') for xi in inputs )
|
||||
input_infos = list( (op, int(IDX)) for (op, IDX) in inputs)
|
||||
all_in_nodes= list(x[1] for x in input_infos)
|
||||
for j in range(i):
|
||||
if j not in all_in_nodes: input_infos.append((default_name, j))
|
||||
node_info = sorted(input_infos, key=lambda x: (x[1], x[0]))
|
||||
genotypes.append( tuple(node_info) )
|
||||
return Structure( genotypes )
|
||||
|
||||
@staticmethod
|
||||
def gen_all(search_space, num, return_ori):
|
||||
assert isinstance(search_space, list) or isinstance(search_space, tuple), 'invalid class of search-space : {:}'.format(type(search_space))
|
||||
assert num >= 2, 'There should be at least two nodes in a neural cell instead of {:}'.format(num)
|
||||
all_archs = get_combination(search_space, 1)
|
||||
for i, arch in enumerate(all_archs):
|
||||
all_archs[i] = [ tuple(arch) ]
|
||||
|
||||
for inode in range(2, num):
|
||||
cur_nodes = get_combination(search_space, inode)
|
||||
new_all_archs = []
|
||||
for previous_arch in all_archs:
|
||||
for cur_node in cur_nodes:
|
||||
new_all_archs.append( previous_arch + [tuple(cur_node)] )
|
||||
all_archs = new_all_archs
|
||||
if return_ori:
|
||||
return all_archs
|
||||
else:
|
||||
return [Structure(x) for x in all_archs]
|
||||
|
||||
|
||||
|
||||
ResNet_CODE = Structure(
|
||||
[(('nor_conv_3x3', 0), ), # node-1
|
||||
(('nor_conv_3x3', 1), ), # node-2
|
||||
(('skip_connect', 0), ('skip_connect', 2))] # node-3
|
||||
)
|
||||
|
||||
AllConv3x3_CODE = Structure(
|
||||
[(('nor_conv_3x3', 0), ), # node-1
|
||||
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1)), # node-2
|
||||
(('nor_conv_3x3', 0), ('nor_conv_3x3', 1), ('nor_conv_3x3', 2))] # node-3
|
||||
)
|
||||
|
||||
AllFull_CODE = Structure(
|
||||
[(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0)), # node-1
|
||||
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1)), # node-2
|
||||
(('skip_connect', 0), ('nor_conv_1x1', 0), ('nor_conv_3x3', 0), ('avg_pool_3x3', 0), ('skip_connect', 1), ('nor_conv_1x1', 1), ('nor_conv_3x3', 1), ('avg_pool_3x3', 1), ('skip_connect', 2), ('nor_conv_1x1', 2), ('nor_conv_3x3', 2), ('avg_pool_3x3', 2))] # node-3
|
||||
)
|
||||
|
||||
AllConv1x1_CODE = Structure(
|
||||
[(('nor_conv_1x1', 0), ), # node-1
|
||||
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1)), # node-2
|
||||
(('nor_conv_1x1', 0), ('nor_conv_1x1', 1), ('nor_conv_1x1', 2))] # node-3
|
||||
)
|
||||
|
||||
AllIdentity_CODE = Structure(
|
||||
[(('skip_connect', 0), ), # node-1
|
||||
(('skip_connect', 0), ('skip_connect', 1)), # node-2
|
||||
(('skip_connect', 0), ('skip_connect', 1), ('skip_connect', 2))] # node-3
|
||||
)
|
||||
|
||||
architectures = {'resnet' : ResNet_CODE,
|
||||
'all_c3x3': AllConv3x3_CODE,
|
||||
'all_c1x1': AllConv1x1_CODE,
|
||||
'all_idnt': AllIdentity_CODE,
|
||||
'all_full': AllFull_CODE}
|
197
models/cell_searchs/search_cells.py
Normal file
197
models/cell_searchs/search_cells.py
Normal file
@ -0,0 +1,197 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, random, torch
|
||||
import warnings
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import OPS
|
||||
|
||||
|
||||
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
|
||||
class NAS201SearchCell(nn.Module):
|
||||
|
||||
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
|
||||
super(NAS201SearchCell, self).__init__()
|
||||
|
||||
self.op_names = deepcopy(op_names)
|
||||
self.edges = nn.ModuleDict()
|
||||
self.max_nodes = max_nodes
|
||||
self.in_dim = C_in
|
||||
self.out_dim = C_out
|
||||
for i in range(1, max_nodes):
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
if j == 0:
|
||||
xlists = [OPS[op_name](C_in , C_out, stride, affine, track_running_stats) for op_name in op_names]
|
||||
else:
|
||||
xlists = [OPS[op_name](C_in , C_out, 1, affine, track_running_stats) for op_name in op_names]
|
||||
self.edges[ node_str ] = nn.ModuleList( xlists )
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
def extra_repr(self):
|
||||
string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__)
|
||||
return string
|
||||
|
||||
def forward(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
weights = weightss[ self.edge2index[node_str] ]
|
||||
inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
||||
nodes.append( sum(inter_nodes) )
|
||||
return nodes[-1]
|
||||
|
||||
# GDAS
|
||||
def forward_gdas(self, inputs, hardwts, index):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
weights = hardwts[ self.edge2index[node_str] ]
|
||||
argmaxs = index[ self.edge2index[node_str] ].item()
|
||||
weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) )
|
||||
inter_nodes.append( weigsum )
|
||||
nodes.append( sum(inter_nodes) )
|
||||
return nodes[-1]
|
||||
|
||||
# joint
|
||||
def forward_joint(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
weights = weightss[ self.edge2index[node_str] ]
|
||||
#aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
|
||||
aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) )
|
||||
inter_nodes.append( aggregation )
|
||||
nodes.append( sum(inter_nodes) )
|
||||
return nodes[-1]
|
||||
|
||||
# uniform random sampling per iteration, SETN
|
||||
def forward_urs(self, inputs):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
while True: # to avoid select zero for all ops
|
||||
sops, has_non_zero = [], False
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
candidates = self.edges[node_str]
|
||||
select_op = random.choice(candidates)
|
||||
sops.append( select_op )
|
||||
if not hasattr(select_op, 'is_zero') or select_op.is_zero is False: has_non_zero=True
|
||||
if has_non_zero: break
|
||||
inter_nodes = []
|
||||
for j, select_op in enumerate(sops):
|
||||
inter_nodes.append( select_op(nodes[j]) )
|
||||
nodes.append( sum(inter_nodes) )
|
||||
return nodes[-1]
|
||||
|
||||
# select the argmax
|
||||
def forward_select(self, inputs, weightss):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
inter_nodes = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
weights = weightss[ self.edge2index[node_str] ]
|
||||
inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) )
|
||||
#inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
|
||||
nodes.append( sum(inter_nodes) )
|
||||
return nodes[-1]
|
||||
|
||||
# forward with a specific structure
|
||||
def forward_dynamic(self, inputs, structure):
|
||||
nodes = [inputs]
|
||||
for i in range(1, self.max_nodes):
|
||||
cur_op_node = structure.nodes[i-1]
|
||||
inter_nodes = []
|
||||
for op_name, j in cur_op_node:
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op_index = self.op_names.index( op_name )
|
||||
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
|
||||
nodes.append( sum(inter_nodes) )
|
||||
return nodes[-1]
|
||||
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, space, C, stride, affine, track_running_stats):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in space:
|
||||
op = OPS[primitive](C, C, stride, affine, track_running_stats)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward_gdas(self, x, weights, index):
|
||||
return self._ops[index](x) * weights[index]
|
||||
|
||||
def forward_darts(self, x, weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
|
||||
class NASNetSearchCell(nn.Module):
|
||||
|
||||
def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
|
||||
super(NASNetSearchCell, self).__init__()
|
||||
self.reduction = reduction
|
||||
self.op_names = deepcopy(space)
|
||||
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
|
||||
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
|
||||
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
self.edges = nn.ModuleDict()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
node_str = '{:}<-{:}'.format(i, j) # indicate the edge from node-(j) to node-(i+2)
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(space, C, stride, affine, track_running_stats)
|
||||
self.edges[ node_str ] = op
|
||||
self.edge_keys = sorted(list(self.edges.keys()))
|
||||
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
|
||||
self.num_edges = len(self.edges)
|
||||
|
||||
def forward_gdas(self, s0, s1, weightss, indexs):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op = self.edges[ node_str ]
|
||||
weights = weightss[ self.edge2index[node_str] ]
|
||||
index = indexs[ self.edge2index[node_str] ].item()
|
||||
clist.append( op.forward_gdas(h, weights, index) )
|
||||
states.append( sum(clist) )
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
def forward_darts(self, s0, s1, weightss):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op = self.edges[ node_str ]
|
||||
weights = weightss[ self.edge2index[node_str] ]
|
||||
clist.append( op.forward_darts(h, weights) )
|
||||
states.append( sum(clist) )
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
97
models/cell_searchs/search_model_darts.py
Normal file
97
models/cell_searchs/search_model_darts.py
Normal file
@ -0,0 +1,97 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
########################################################
|
||||
# DARTS: Differentiable Architecture Search, ICLR 2019 #
|
||||
########################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkDarts(nn.Module):
|
||||
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
|
||||
super(TinyNetworkDarts, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||
xlist+= list( self.classifier.parameters() )
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ weights.argmax().item() ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return Structure( genotypes )
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell(feature, alphas)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
108
models/cell_searchs/search_model_darts_nasnet.py
Normal file
108
models/cell_searchs/search_model_darts_nasnet.py
Normal file
@ -0,0 +1,108 @@
|
||||
####################
|
||||
# DARTS, ICLR 2019 #
|
||||
####################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkDARTS(nn.Module):
|
||||
|
||||
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
|
||||
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
|
||||
super(NASNetworkDARTS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C*stem_multiplier))
|
||||
|
||||
# config for each layer
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
|
||||
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
|
||||
def get_weights(self) -> List[torch.nn.Parameter]:
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||
xlist+= list( self.classifier.parameters() )
|
||||
return xlist
|
||||
|
||||
def get_alphas(self) -> List[torch.nn.Parameter]:
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self) -> Text:
|
||||
with torch.no_grad():
|
||||
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
|
||||
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
|
||||
return '{:}\n{:}'.format(A, B)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self) -> Text:
|
||||
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def genotype(self) -> Dict[Text, List]:
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2+i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
ws = weights[ self.edge2index[node_str] ]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == 'none': continue
|
||||
edges.append( (op_name, j, ws[k]) )
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append( tuple(selected_edges) )
|
||||
return gene
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
|
||||
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
|
||||
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
normal_w = nn.functional.softmax(self.arch_normal_parameters, dim=1)
|
||||
reduce_w = nn.functional.softmax(self.arch_reduce_parameters, dim=1)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction: ww = reduce_w
|
||||
else : ww = normal_w
|
||||
s0, s1 = s1, cell.forward_darts(s0, s1, ww)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
94
models/cell_searchs/search_model_enas.py
Normal file
94
models/cell_searchs/search_model_enas.py
Normal file
@ -0,0 +1,94 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
from .search_model_enas_utils import Controller
|
||||
|
||||
|
||||
class TinyNetworkENAS(nn.Module):
|
||||
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
|
||||
super(TinyNetworkENAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
# to maintain the sampled architecture
|
||||
self.sampled_arch = None
|
||||
|
||||
def update_arch(self, _arch):
|
||||
if _arch is None:
|
||||
self.sampled_arch = None
|
||||
elif isinstance(_arch, Structure):
|
||||
self.sampled_arch = _arch
|
||||
elif isinstance(_arch, (list, tuple)):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op_index = _arch[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ op_index ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
self.sampled_arch = Structure(genotypes)
|
||||
else:
|
||||
raise ValueError('invalid type of input architecture : {:}'.format(_arch))
|
||||
return self.sampled_arch
|
||||
|
||||
def create_controller(self):
|
||||
return Controller(len(self.edge2index), len(self.op_names))
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.sampled_arch)
|
||||
else: feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
55
models/cell_searchs/search_model_enas_utils.py
Normal file
55
models/cell_searchs/search_model_enas_utils.py
Normal file
@ -0,0 +1,55 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##########################################################################
|
||||
# Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
|
||||
##########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
|
||||
class Controller(nn.Module):
|
||||
# we refer to https://github.com/TDeVries/enas_pytorch/blob/master/models/controller.py
|
||||
def __init__(self, num_edge, num_ops, lstm_size=32, lstm_num_layers=2, tanh_constant=2.5, temperature=5.0):
|
||||
super(Controller, self).__init__()
|
||||
# assign the attributes
|
||||
self.num_edge = num_edge
|
||||
self.num_ops = num_ops
|
||||
self.lstm_size = lstm_size
|
||||
self.lstm_N = lstm_num_layers
|
||||
self.tanh_constant = tanh_constant
|
||||
self.temperature = temperature
|
||||
# create parameters
|
||||
self.register_parameter('input_vars', nn.Parameter(torch.Tensor(1, 1, lstm_size)))
|
||||
self.w_lstm = nn.LSTM(input_size=self.lstm_size, hidden_size=self.lstm_size, num_layers=self.lstm_N)
|
||||
self.w_embd = nn.Embedding(self.num_ops, self.lstm_size)
|
||||
self.w_pred = nn.Linear(self.lstm_size, self.num_ops)
|
||||
|
||||
nn.init.uniform_(self.input_vars , -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_hh_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_lstm.weight_ih_l0, -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_embd.weight , -0.1, 0.1)
|
||||
nn.init.uniform_(self.w_pred.weight , -0.1, 0.1)
|
||||
|
||||
def forward(self):
|
||||
|
||||
inputs, h0 = self.input_vars, None
|
||||
log_probs, entropys, sampled_arch = [], [], []
|
||||
for iedge in range(self.num_edge):
|
||||
outputs, h0 = self.w_lstm(inputs, h0)
|
||||
|
||||
logits = self.w_pred(outputs)
|
||||
logits = logits / self.temperature
|
||||
logits = self.tanh_constant * torch.tanh(logits)
|
||||
# distribution
|
||||
op_distribution = Categorical(logits=logits)
|
||||
op_index = op_distribution.sample()
|
||||
sampled_arch.append( op_index.item() )
|
||||
|
||||
op_log_prob = op_distribution.log_prob(op_index)
|
||||
log_probs.append( op_log_prob.view(-1) )
|
||||
op_entropy = op_distribution.entropy()
|
||||
entropys.append( op_entropy.view(-1) )
|
||||
|
||||
# obtain the input embedding for the next step
|
||||
inputs = self.w_embd(op_index)
|
||||
return torch.sum(torch.cat(log_probs)), torch.sum(torch.cat(entropys)), sampled_arch
|
111
models/cell_searchs/search_model_gdas.py
Normal file
111
models/cell_searchs/search_model_gdas.py
Normal file
@ -0,0 +1,111 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkGDAS(nn.Module):
|
||||
|
||||
#def __init__(self, C, N, max_nodes, num_classes, search_space, affine=False, track_running_stats=True):
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
|
||||
super(TinyNetworkGDAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||
xlist+= list( self.classifier.parameters() )
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ weights.argmax().item() ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return Structure( genotypes )
|
||||
|
||||
def forward(self, inputs):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
|
||||
logits = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
|
||||
continue
|
||||
else: break
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_gdas(feature, hardwts, index)
|
||||
else:
|
||||
feature = cell(feature)
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
125
models/cell_searchs/search_model_gdas_nasnet.py
Normal file
125
models/cell_searchs/search_model_gdas_nasnet.py
Normal file
@ -0,0 +1,125 @@
|
||||
###########################################################################
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
||||
###########################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkGDAS(nn.Module):
|
||||
|
||||
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
|
||||
super(NASNetworkGDAS, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C*stem_multiplier))
|
||||
|
||||
# config for each layer
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
|
||||
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.tau = 10
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||
xlist+= list( self.classifier.parameters() )
|
||||
return xlist
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
|
||||
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
|
||||
return '{:}\n{:}'.format(A, B)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2+i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
ws = weights[ self.edge2index[node_str] ]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == 'none': continue
|
||||
edges.append( (op_name, j, ws[k]) )
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append( tuple(selected_edges) )
|
||||
return gene
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
|
||||
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
|
||||
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
|
||||
|
||||
def forward(self, inputs):
|
||||
def get_gumbel_prob(xins):
|
||||
while True:
|
||||
gumbels = -torch.empty_like(xins).exponential_().log()
|
||||
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
|
||||
probs = nn.functional.softmax(logits, dim=1)
|
||||
index = probs.max(-1, keepdim=True)[1]
|
||||
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
|
||||
hardwts = one_h - probs.detach() + probs
|
||||
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
|
||||
continue
|
||||
else: break
|
||||
return hardwts, index
|
||||
|
||||
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
|
||||
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
|
||||
else : hardwts, index = normal_hardwts, normal_index
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
81
models/cell_searchs/search_model_random.py
Normal file
81
models/cell_searchs/search_model_random.py
Normal file
@ -0,0 +1,81 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##############################################################################
|
||||
# Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
|
||||
##############################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkRANDOM(nn.Module):
|
||||
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
|
||||
super(TinyNetworkRANDOM, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_cache = None
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def random_genotype(self, set_cache):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
op_name = random.choice( self.op_names )
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
arch = Structure( genotypes )
|
||||
if set_cache: self.arch_cache = arch
|
||||
return arch
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
feature = cell.forward_dynamic(feature, self.arch_cache)
|
||||
else: feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
return out, logits
|
152
models/cell_searchs/search_model_setn.py
Normal file
152
models/cell_searchs/search_model_setn.py
Normal file
@ -0,0 +1,152 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
######################################################################################
|
||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||
######################################################################################
|
||||
import torch, random
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from ..cell_operations import ResNetBasicblock
|
||||
from .search_cells import NAS201SearchCell as SearchCell
|
||||
from .genotypes import Structure
|
||||
|
||||
|
||||
class TinyNetworkSETN(nn.Module):
|
||||
|
||||
def __init__(self, C, N, max_nodes, num_classes, search_space, affine, track_running_stats):
|
||||
super(TinyNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self.max_nodes = max_nodes
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C))
|
||||
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
C_prev, num_edge, edge2index = C, None, None
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
if reduction:
|
||||
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
||||
else:
|
||||
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev = cell.out_dim
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.mode = 'urs'
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ['urs', 'joint', 'select', 'dynamic']
|
||||
self.mode = mode
|
||||
if mode == 'dynamic': self.dynamic_cell = deepcopy( dynamic_cell )
|
||||
else : self.dynamic_cell = None
|
||||
|
||||
def get_cal_mode(self):
|
||||
return self.mode
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||
xlist+= list( self.classifier.parameters() )
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_parameters]
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, Max-Nodes={max_nodes}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def genotype(self):
|
||||
genotypes = []
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
with torch.no_grad():
|
||||
weights = self.arch_parameters[ self.edge2index[node_str] ]
|
||||
op_name = self.op_names[ weights.argmax().item() ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return Structure( genotypes )
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[ self.edge2index[node_str] ]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[ op_index ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return Structure( genotypes )
|
||||
|
||||
def get_log_prob(self, arch):
|
||||
with torch.no_grad():
|
||||
logits = nn.functional.log_softmax(self.arch_parameters, dim=-1)
|
||||
select_logits = []
|
||||
for i, node_info in enumerate(arch.nodes):
|
||||
for op, xin in node_info:
|
||||
node_str = '{:}<-{:}'.format(i+1, xin)
|
||||
op_index = self.op_names.index(op)
|
||||
select_logits.append( logits[self.edge2index[node_str], op_index] )
|
||||
return sum(select_logits).item()
|
||||
|
||||
|
||||
def return_topK(self, K):
|
||||
archs = Structure.gen_all(self.op_names, self.max_nodes, False)
|
||||
pairs = [(self.get_log_prob(arch), arch) for arch in archs]
|
||||
if K < 0 or K >= len(archs): K = len(archs)
|
||||
sorted_pairs = sorted(pairs, key=lambda x: -x[0])
|
||||
return_pairs = [sorted_pairs[_][1] for _ in range(K)]
|
||||
return return_pairs
|
||||
|
||||
|
||||
def forward(self, inputs):
|
||||
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
with torch.no_grad():
|
||||
alphas_cpu = alphas.detach().cpu()
|
||||
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if isinstance(cell, SearchCell):
|
||||
if self.mode == 'urs':
|
||||
feature = cell.forward_urs(feature)
|
||||
elif self.mode == 'select':
|
||||
feature = cell.forward_select(feature, alphas_cpu)
|
||||
elif self.mode == 'joint':
|
||||
feature = cell.forward_joint(feature, alphas)
|
||||
elif self.mode == 'dynamic':
|
||||
feature = cell.forward_dynamic(feature, self.dynamic_cell)
|
||||
else: raise ValueError('invalid mode={:}'.format(self.mode))
|
||||
else: feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
139
models/cell_searchs/search_model_setn_nasnet.py
Normal file
139
models/cell_searchs/search_model_setn_nasnet.py
Normal file
@ -0,0 +1,139 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
######################################################################################
|
||||
# One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 #
|
||||
######################################################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from copy import deepcopy
|
||||
from typing import List, Text, Dict
|
||||
from .search_cells import NASNetSearchCell as SearchCell
|
||||
|
||||
|
||||
# The macro structure is based on NASNet
|
||||
class NASNetworkSETN(nn.Module):
|
||||
|
||||
def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int,
|
||||
num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool):
|
||||
super(NASNetworkSETN, self).__init__()
|
||||
self._C = C
|
||||
self._layerN = N
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C*stem_multiplier))
|
||||
|
||||
# config for each layer
|
||||
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
|
||||
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
|
||||
|
||||
num_edge, edge2index = None, None
|
||||
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
|
||||
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
||||
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
|
||||
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
||||
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
||||
self.cells.append( cell )
|
||||
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
|
||||
self.op_names = deepcopy( search_space )
|
||||
self._Layer = len(self.cells)
|
||||
self.edge2index = edge2index
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
||||
self.mode = 'urs'
|
||||
self.dynamic_cell = None
|
||||
|
||||
def set_cal_mode(self, mode, dynamic_cell=None):
|
||||
assert mode in ['urs', 'joint', 'select', 'dynamic']
|
||||
self.mode = mode
|
||||
if mode == 'dynamic':
|
||||
self.dynamic_cell = deepcopy(dynamic_cell)
|
||||
else:
|
||||
self.dynamic_cell = None
|
||||
|
||||
def get_weights(self):
|
||||
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
|
||||
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
|
||||
xlist+= list( self.classifier.parameters() )
|
||||
return xlist
|
||||
|
||||
def get_alphas(self):
|
||||
return [self.arch_normal_parameters, self.arch_reduce_parameters]
|
||||
|
||||
def show_alphas(self):
|
||||
with torch.no_grad():
|
||||
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
|
||||
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
|
||||
return '{:}\n{:}'.format(A, B)
|
||||
|
||||
def get_message(self):
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def dync_genotype(self, use_random=False):
|
||||
genotypes = []
|
||||
with torch.no_grad():
|
||||
alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1)
|
||||
for i in range(1, self.max_nodes):
|
||||
xlist = []
|
||||
for j in range(i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
if use_random:
|
||||
op_name = random.choice(self.op_names)
|
||||
else:
|
||||
weights = alphas_cpu[ self.edge2index[node_str] ]
|
||||
op_index = torch.multinomial(weights, 1).item()
|
||||
op_name = self.op_names[ op_index ]
|
||||
xlist.append((op_name, j))
|
||||
genotypes.append( tuple(xlist) )
|
||||
return Structure( genotypes )
|
||||
|
||||
def genotype(self):
|
||||
def _parse(weights):
|
||||
gene = []
|
||||
for i in range(self._steps):
|
||||
edges = []
|
||||
for j in range(2+i):
|
||||
node_str = '{:}<-{:}'.format(i, j)
|
||||
ws = weights[ self.edge2index[node_str] ]
|
||||
for k, op_name in enumerate(self.op_names):
|
||||
if op_name == 'none': continue
|
||||
edges.append( (op_name, j, ws[k]) )
|
||||
edges = sorted(edges, key=lambda x: -x[-1])
|
||||
selected_edges = edges[:2]
|
||||
gene.append( tuple(selected_edges) )
|
||||
return gene
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
|
||||
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
|
||||
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
|
||||
|
||||
def forward(self, inputs):
|
||||
normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1)
|
||||
reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1)
|
||||
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
# [TODO]
|
||||
raise NotImplementedError
|
||||
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
|
||||
else : hardwts, index = normal_hardwts, normal_index
|
||||
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
|
||||
out = self.lastact(s1)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
62
models/clone_weights.py
Normal file
62
models/clone_weights.py
Normal file
@ -0,0 +1,62 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def copy_conv(module, init):
|
||||
assert isinstance(module, nn.Conv2d), 'invalid module : {:}'.format(module)
|
||||
assert isinstance(init , nn.Conv2d), 'invalid module : {:}'.format(init)
|
||||
new_i, new_o = module.in_channels, module.out_channels
|
||||
module.weight.copy_( init.weight.detach()[:new_o, :new_i] )
|
||||
if module.bias is not None:
|
||||
module.bias.copy_( init.bias.detach()[:new_o] )
|
||||
|
||||
def copy_bn (module, init):
|
||||
assert isinstance(module, nn.BatchNorm2d), 'invalid module : {:}'.format(module)
|
||||
assert isinstance(init , nn.BatchNorm2d), 'invalid module : {:}'.format(init)
|
||||
num_features = module.num_features
|
||||
if module.weight is not None:
|
||||
module.weight.copy_( init.weight.detach()[:num_features] )
|
||||
if module.bias is not None:
|
||||
module.bias.copy_( init.bias.detach()[:num_features] )
|
||||
if module.running_mean is not None:
|
||||
module.running_mean.copy_( init.running_mean.detach()[:num_features] )
|
||||
if module.running_var is not None:
|
||||
module.running_var.copy_( init.running_var.detach()[:num_features] )
|
||||
|
||||
def copy_fc (module, init):
|
||||
assert isinstance(module, nn.Linear), 'invalid module : {:}'.format(module)
|
||||
assert isinstance(init , nn.Linear), 'invalid module : {:}'.format(init)
|
||||
new_i, new_o = module.in_features, module.out_features
|
||||
module.weight.copy_( init.weight.detach()[:new_o, :new_i] )
|
||||
if module.bias is not None:
|
||||
module.bias.copy_( init.bias.detach()[:new_o] )
|
||||
|
||||
def copy_base(module, init):
|
||||
assert type(module).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format(module)
|
||||
assert type( init).__name__ in ['ConvBNReLU', 'Downsample'], 'invalid module : {:}'.format( init)
|
||||
if module.conv is not None:
|
||||
copy_conv(module.conv, init.conv)
|
||||
if module.bn is not None:
|
||||
copy_bn (module.bn, init.bn)
|
||||
|
||||
def copy_basic(module, init):
|
||||
copy_base(module.conv_a, init.conv_a)
|
||||
copy_base(module.conv_b, init.conv_b)
|
||||
if module.downsample is not None:
|
||||
if init.downsample is not None:
|
||||
copy_base(module.downsample, init.downsample)
|
||||
#else:
|
||||
# import pdb; pdb.set_trace()
|
||||
|
||||
|
||||
def init_from_model(network, init_model):
|
||||
with torch.no_grad():
|
||||
copy_fc(network.classifier, init_model.classifier)
|
||||
for base, target in zip(init_model.layers, network.layers):
|
||||
assert type(base).__name__ == type(target).__name__, 'invalid type : {:} vs {:}'.format(base, target)
|
||||
if type(base).__name__ == 'ConvBNReLU':
|
||||
copy_base(target, base)
|
||||
elif type(base).__name__ == 'ResNetBasicblock':
|
||||
copy_basic(target, base)
|
||||
else:
|
||||
raise ValueError('unknown type name : {:}'.format( type(base).__name__ ))
|
18
models/initialization.py
Normal file
18
models/initialization.py
Normal file
@ -0,0 +1,18 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def initialize_resnet(m):
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
|
167
models/shape_infers/InferCifarResNet.py
Normal file
167
models/shape_infers/InferCifarResNet.py
Normal file
@ -0,0 +1,167 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
else : self.bn = None
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.bn : out = self.bn( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
|
||||
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
#self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
|
||||
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
#self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class InferCifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, xblocks, xchannels, num_classes, zero_init_residual):
|
||||
super(InferCifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
|
||||
|
||||
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
last_channel_idx = 1
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(iL+1, layer_blocks):
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
break
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
150
models/shape_infers/InferCifarResNet_depth.py
Normal file
150
models/shape_infers/InferCifarResNet_depth.py
Normal file
@ -0,0 +1,150 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
else : self.bn = None
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.bn : out = self.bn( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
|
||||
elif inplanes != planes*self.expansion:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes*self.expansion
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class InferDepthCifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, xblocks, num_classes, zero_init_residual):
|
||||
super(InferDepthCifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
assert len(xblocks) == 3, 'invalid xblocks : {:}'.format(xblocks)
|
||||
|
||||
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
self.channels = [16]
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, planes, module.out_dim, stride)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
break
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.channels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
160
models/shape_infers/InferCifarResNet_width.py
Normal file
160
models/shape_infers/InferCifarResNet_width.py
Normal file
@ -0,0 +1,160 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
else : self.bn = None
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.bn : out = self.bn( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
|
||||
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
#self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
|
||||
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=False, has_relu=False)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=False, has_relu=False)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
#self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class InferWidthCifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, xchannels, num_classes, zero_init_residual):
|
||||
super(InferWidthCifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
|
||||
self.message = 'InferWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
last_channel_idx = 1
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
170
models/shape_infers/InferImagenetResNet.py
Normal file
170
models/shape_infers/InferImagenetResNet.py
Normal file
@ -0,0 +1,170 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from ..initialization import initialize_resnet
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
|
||||
num_conv = 1
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
else : self.bn = None
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.bn : out = self.bn( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
num_conv = 2
|
||||
expansion = 1
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
|
||||
assert len(iCs) == 3,'invalid lengths of iCs : {:}'.format(iCs)
|
||||
|
||||
self.conv_a = ConvBNReLU(iCs[0], iCs[1], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU(iCs[1], iCs[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[2]
|
||||
elif iCs[0] != iCs[2]:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[2], 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
#self.out_dim = max(residual_in, iCs[2])
|
||||
self.out_dim = iCs[2]
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + basicblock
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, iCs, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
assert isinstance(iCs, tuple) or isinstance(iCs, list), 'invalid type of iCs : {:}'.format( iCs )
|
||||
assert len(iCs) == 4,'invalid lengths of iCs : {:}'.format(iCs)
|
||||
self.conv_1x1 = ConvBNReLU(iCs[0], iCs[1], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU(iCs[1], iCs[2], 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(iCs[2], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[0]
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=True , has_bn=True, has_relu=False)
|
||||
residual_in = iCs[3]
|
||||
elif iCs[0] != iCs[3]:
|
||||
self.downsample = ConvBNReLU(iCs[0], iCs[3], 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
residual_in = iCs[3]
|
||||
else:
|
||||
self.downsample = None
|
||||
#self.out_dim = max(residual_in, iCs[3])
|
||||
self.out_dim = iCs[3]
|
||||
|
||||
def forward(self, inputs):
|
||||
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(inputs)
|
||||
else:
|
||||
residual = inputs
|
||||
out = residual + bottleneck
|
||||
return F.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class InferImagenetResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, layers, xblocks, xchannels, deep_stem, num_classes, zero_init_residual):
|
||||
super(InferImagenetResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'BasicBlock':
|
||||
block = ResNetBasicblock
|
||||
elif block_name == 'Bottleneck':
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
assert len(xblocks) == len(layers), 'invalid layers : {:} vs xblocks : {:}'.format(layers, xblocks)
|
||||
|
||||
self.message = 'InferImagenetResNet : Depth : {:} -> {:}, Layers for each block : {:}'.format(sum(layers)*block.num_conv, sum(xblocks)*block.num_conv, xblocks)
|
||||
self.num_classes = num_classes
|
||||
self.xchannels = xchannels
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
last_channel_idx = 1
|
||||
else:
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(xchannels[0], xchannels[1], 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
,ConvBNReLU(xchannels[1], xchannels[2], 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
last_channel_idx = 2
|
||||
self.layers.append( nn.MaxPool2d(kernel_size=3, stride=2, padding=1) )
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
for iL in range(layer_blocks):
|
||||
num_conv = block.num_conv
|
||||
iCs = self.xchannels[last_channel_idx:last_channel_idx+num_conv+1]
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iCs, stride)
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iCs={:}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iCs, module.out_dim, stride)
|
||||
if iL + 1 == xblocks[stage]: # reach the maximum depth
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(iL+1, layer_blocks):
|
||||
last_channel_idx += num_conv
|
||||
self.xchannels[last_channel_idx] = module.out_dim
|
||||
break
|
||||
assert last_channel_idx + 1 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
|
||||
self.classifier = nn.Linear(self.xchannels[-1], num_classes)
|
||||
|
||||
self.apply(initialize_resnet)
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, ResNetBasicblock):
|
||||
nn.init.constant_(m.conv_b.bn.weight, 0)
|
||||
elif isinstance(m, ResNetBottleneck):
|
||||
nn.init.constant_(m.conv_1x4.bn.weight, 0)
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
122
models/shape_infers/InferMobileNetV2.py
Normal file
122
models/shape_infers/InferMobileNetV2.py
Normal file
@ -0,0 +1,122 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018
|
||||
from torch import nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import parse_channel_info
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, kernel_size, stride, groups, has_bn=True, has_relu=True):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
padding = (kernel_size - 1) // 2
|
||||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False)
|
||||
if has_bn: self.bn = nn.BatchNorm2d(out_planes)
|
||||
else : self.bn = None
|
||||
if has_relu: self.relu = nn.ReLU6(inplace=True)
|
||||
else : self.relu = None
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv( x )
|
||||
if self.bn: out = self.bn ( out )
|
||||
if self.relu: out = self.relu( out )
|
||||
return out
|
||||
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
def __init__(self, channels, stride, expand_ratio, additive):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
assert stride in [1, 2], 'invalid stride : {:}'.format(stride)
|
||||
assert len(channels) in [2, 3], 'invalid channels : {:}'.format(channels)
|
||||
|
||||
if len(channels) == 2:
|
||||
layers = []
|
||||
else:
|
||||
layers = [ConvBNReLU(channels[0], channels[1], 1, 1, 1)]
|
||||
layers.extend([
|
||||
# dw
|
||||
ConvBNReLU(channels[-2], channels[-2], 3, stride, channels[-2]),
|
||||
# pw-linear
|
||||
ConvBNReLU(channels[-2], channels[-1], 1, 1, 1, True, False),
|
||||
])
|
||||
self.conv = nn.Sequential(*layers)
|
||||
self.additive = additive
|
||||
if self.additive and channels[0] != channels[-1]:
|
||||
self.shortcut = ConvBNReLU(channels[0], channels[-1], 1, 1, 1, True, False)
|
||||
else:
|
||||
self.shortcut = None
|
||||
self.out_dim = channels[-1]
|
||||
|
||||
def forward(self, x):
|
||||
out = self.conv(x)
|
||||
# if self.additive: return additive_func(out, x)
|
||||
if self.shortcut: return out + self.shortcut(x)
|
||||
else : return out
|
||||
|
||||
|
||||
class InferMobileNetV2(nn.Module):
|
||||
def __init__(self, num_classes, xchannels, xblocks, dropout):
|
||||
super(InferMobileNetV2, self).__init__()
|
||||
block = InvertedResidual
|
||||
inverted_residual_setting = [
|
||||
# t, c, n, s
|
||||
[1, 16 , 1, 1],
|
||||
[6, 24 , 2, 2],
|
||||
[6, 32 , 3, 2],
|
||||
[6, 64 , 4, 2],
|
||||
[6, 96 , 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1],
|
||||
]
|
||||
assert len(inverted_residual_setting) == len(xblocks), 'invalid number of layers : {:} vs {:}'.format(len(inverted_residual_setting), len(xblocks))
|
||||
for block_num, ir_setting in zip(xblocks, inverted_residual_setting):
|
||||
assert block_num <= ir_setting[2], '{:} vs {:}'.format(block_num, ir_setting)
|
||||
xchannels = parse_channel_info(xchannels)
|
||||
#for i, chs in enumerate(xchannels):
|
||||
# if i > 0: assert chs[0] == xchannels[i-1][-1], 'Layer[{:}] is invalid {:} vs {:}'.format(i, xchannels[i-1], chs)
|
||||
self.xchannels = xchannels
|
||||
self.message = 'InferMobileNetV2 : xblocks={:}'.format(xblocks)
|
||||
# building first layer
|
||||
features = [ConvBNReLU(xchannels[0][0], xchannels[0][1], 3, 2, 1)]
|
||||
last_channel_idx = 1
|
||||
|
||||
# building inverted residual blocks
|
||||
for stage, (t, c, n, s) in enumerate(inverted_residual_setting):
|
||||
for i in range(n):
|
||||
stride = s if i == 0 else 1
|
||||
additv = True if i > 0 else False
|
||||
module = block(self.xchannels[last_channel_idx], stride, t, additv)
|
||||
features.append(module)
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, Cs={:}, stride={:}, expand={:}, original-C={:}".format(stage, i, n, len(features), self.xchannels[last_channel_idx], stride, t, c)
|
||||
last_channel_idx += 1
|
||||
if i + 1 == xblocks[stage]:
|
||||
out_channel = module.out_dim
|
||||
for iiL in range(i+1, n):
|
||||
last_channel_idx += 1
|
||||
self.xchannels[last_channel_idx][0] = module.out_dim
|
||||
break
|
||||
# building last several layers
|
||||
features.append(ConvBNReLU(self.xchannels[last_channel_idx][0], self.xchannels[last_channel_idx][1], 1, 1, 1))
|
||||
assert last_channel_idx + 2 == len(self.xchannels), '{:} vs {:}'.format(last_channel_idx, len(self.xchannels))
|
||||
# make it nn.Sequential
|
||||
self.features = nn.Sequential(*features)
|
||||
|
||||
# building classifier
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(self.xchannels[last_channel_idx][1], num_classes),
|
||||
)
|
||||
|
||||
# weight initialization
|
||||
self.apply( initialize_resnet )
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
features = self.features(inputs)
|
||||
vectors = features.mean([2, 3])
|
||||
predicts = self.classifier(vectors)
|
||||
return features, predicts
|
58
models/shape_infers/InferTinyCellNet.py
Normal file
58
models/shape_infers/InferTinyCellNet.py
Normal file
@ -0,0 +1,58 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from typing import List, Text, Any
|
||||
import torch.nn as nn
|
||||
from models.cell_operations import ResNetBasicblock
|
||||
from models.cell_infers.cells import InferCell
|
||||
|
||||
|
||||
class DynamicShapeTinyNet(nn.Module):
|
||||
|
||||
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
|
||||
super(DynamicShapeTinyNet, self).__init__()
|
||||
self._channels = channels
|
||||
if len(channels) % 3 != 2:
|
||||
raise ValueError('invalid number of layers : {:}'.format(len(channels)))
|
||||
self._num_stage = N = len(channels) // 3
|
||||
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(channels[0]))
|
||||
|
||||
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
||||
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
||||
|
||||
c_prev = channels[0]
|
||||
self.cells = nn.ModuleList()
|
||||
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
|
||||
if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
|
||||
else : cell = InferCell(genotype, c_prev, c_curr, 1)
|
||||
self.cells.append( cell )
|
||||
c_prev = cell.out_dim
|
||||
self._num_layer = len(self.cells)
|
||||
|
||||
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(c_prev, num_classes)
|
||||
|
||||
def get_message(self) -> Text:
|
||||
string = self.extra_repr()
|
||||
for i, cell in enumerate(self.cells):
|
||||
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
||||
return string
|
||||
|
||||
def extra_repr(self):
|
||||
return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
||||
|
||||
def forward(self, inputs):
|
||||
feature = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
feature = cell(feature)
|
||||
|
||||
out = self.lastact(feature)
|
||||
out = self.global_pooling( out )
|
||||
out = out.view(out.size(0), -1)
|
||||
logits = self.classifier(out)
|
||||
|
||||
return out, logits
|
9
models/shape_infers/__init__.py
Normal file
9
models/shape_infers/__init__.py
Normal file
@ -0,0 +1,9 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||||
#####################################################
|
||||
from .InferCifarResNet_width import InferWidthCifarResNet
|
||||
from .InferImagenetResNet import InferImagenetResNet
|
||||
from .InferCifarResNet_depth import InferDepthCifarResNet
|
||||
from .InferCifarResNet import InferCifarResNet
|
||||
from .InferMobileNetV2 import InferMobileNetV2
|
||||
from .InferTinyCellNet import DynamicShapeTinyNet
|
5
models/shape_infers/shared_utils.py
Normal file
5
models/shape_infers/shared_utils.py
Normal file
@ -0,0 +1,5 @@
|
||||
def parse_channel_info(xstring):
|
||||
blocks = xstring.split(' ')
|
||||
blocks = [x.split('-') for x in blocks]
|
||||
blocks = [[int(_) for _ in x] for x in blocks]
|
||||
return blocks
|
502
models/shape_searchs/SearchCifarResNet.py
Normal file
502
models/shape_searchs/SearchCifarResNet.py
Normal file
@ -0,0 +1,502 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth+1, 2))
|
||||
if choices[-1] < nDepth: choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError('invalid nDepth : {:}'.format(nDepth))
|
||||
if return_num: return len(choices)
|
||||
else : return choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:,:oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
|
||||
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
#else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
|
||||
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
|
||||
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
|
||||
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None: flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, 'invalid length : {:}'.format(index)
|
||||
# compute expected flop
|
||||
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.has_bn:out= self.BNs[-1]( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2) , out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes*self.expansion:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
|
||||
|
||||
|
||||
class SearchShapeCifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchShapeCifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
|
||||
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {'choices': block_choices,
|
||||
'stage' : stage,
|
||||
'xstart' : xstart}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append( (xend, info) )
|
||||
xstart, xstage = info['xstart'], info['stage']
|
||||
for ilayer in range(xstart, xend+1):
|
||||
idx = bisect_right(info['choices'], ilayer-1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = 'basic'
|
||||
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
|
||||
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
|
||||
|
||||
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))))
|
||||
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None: config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][ torch.argmax(probe).item() ]
|
||||
elif mode == 'max':
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == 'fix':
|
||||
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
|
||||
elif mode == 'random':
|
||||
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
|
||||
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
channels.append( C )
|
||||
# select depth
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == 'max' or mode == 'fix':
|
||||
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == 'random':
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple( channels[s:e+1] )
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop+= layer.get_flops(xchl)
|
||||
else:
|
||||
flop+= 0 # do not use this layer
|
||||
else:
|
||||
flop+= layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict['xchannels'] = channels
|
||||
config_dict['xblocks'] = selected_layers
|
||||
config_dict['super_type'] = 'infer-shape'
|
||||
config_dict['estimated_FLOP'] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions))
|
||||
string+= '\n{:}'.format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
|
||||
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:17s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
string += '\n-----------------------------------------------'
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
|
||||
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:52s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
|
||||
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
|
||||
selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths [last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
layer_prob = flop_width_probs [last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
|
||||
feature_maps.append( x )
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]['choices']
|
||||
xstagei = self.depth_info[i]['stage']
|
||||
#print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
#for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max( feature_maps[A].size(1) for A in choices )
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
#drop_ratio = 1-(tempi+1.0)/len(choices)
|
||||
#xtensor = drop_path(xtensor, drop_ratio)
|
||||
possible_tensors.append( xtensor )
|
||||
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append( x_expected_flop )
|
||||
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack( [sum(flops)] )
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
340
models/shape_searchs/SearchCifarResNet_depth.py
Normal file
340
models/shape_searchs/SearchCifarResNet_depth.py
Normal file
@ -0,0 +1,340 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(nDepth, return_num):
|
||||
if nDepth == 2:
|
||||
choices = (1, 2)
|
||||
elif nDepth == 3:
|
||||
choices = (1, 2, 3)
|
||||
elif nDepth > 3:
|
||||
choices = list(range(1, nDepth+1, 2))
|
||||
if choices[-1] < nDepth: choices.append(nDepth)
|
||||
else:
|
||||
raise ValueError('invalid nDepth : {:}'.format(nDepth))
|
||||
if return_num: return len(choices)
|
||||
else : return choices
|
||||
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
|
||||
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
else : self.bn = None
|
||||
if has_relu: self.relu = nn.ReLU(inplace=False)
|
||||
else : self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
iC, oC = self.in_dim, self.out_dim
|
||||
assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
|
||||
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
|
||||
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
|
||||
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None: flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.bn : out = self.bn( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2) , out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_flops(self, divide=1):
|
||||
flop_A = self.conv_a.get_flops(divide)
|
||||
flop_B = self.conv_b.get_flops(divide)
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_C = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_C = 0
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes*self.expansion:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
|
||||
|
||||
def get_flops(self, divide):
|
||||
flop_A = self.conv_1x1.get_flops(divide)
|
||||
flop_B = self.conv_3x3.get_flops(divide)
|
||||
flop_C = self.conv_1x4.get_flops(divide)
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_D = self.downsample.get_flops(divide)
|
||||
else:
|
||||
flop_D = 0
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
class SearchDepthCifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchDepthCifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
|
||||
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage in range(3):
|
||||
cur_block_choices = get_depth_choices(layer_blocks, False)
|
||||
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
|
||||
self.message += "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format(stage, cur_block_choices, layer_blocks)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {'choices': block_choices,
|
||||
'stage' : stage,
|
||||
'xstart' : xstart}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append( (xend, info) )
|
||||
xstart, xstage = info['xstart'], info['stage']
|
||||
for ilayer in range(xstart, xend+1):
|
||||
idx = bisect_right(info['choices'], ilayer-1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = 'basic'
|
||||
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
|
||||
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))))
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.depth_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None: config_dict = config_dict.copy()
|
||||
# select depth
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
elif mode == 'max':
|
||||
choices = [depth_probs.size(1)-1 for _ in range(depth_probs.size(0))]
|
||||
elif mode == 'random':
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.multinomial(depth_probs, 1, False).cpu().tolist()
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop+= layer.get_flops()
|
||||
else:
|
||||
flop+= 0 # do not use this layer
|
||||
else:
|
||||
flop+= layer.get_flops()
|
||||
# the last fc layer
|
||||
flop += self.classifier.in_features * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict['xblocks'] = selected_layers
|
||||
config_dict['super_type'] = 'infer-depth'
|
||||
config_dict['estimated_FLOP'] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for depth, there are {:} attention probabilities.".format(len(self.depth_attentions))
|
||||
string+= '\n{:}'.format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
|
||||
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:17s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
|
||||
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
|
||||
x, flops = inputs, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
layer_i = layer( x )
|
||||
feature_maps.append( layer_i )
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]['choices']
|
||||
xstagei = self.depth_info[i]['stage']
|
||||
possible_tensors = []
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = feature_maps[A]
|
||||
possible_tensors.append( xtensor )
|
||||
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
|
||||
x = weighted_sum
|
||||
else:
|
||||
x = layer_i
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
#print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6)))
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops(1e6)
|
||||
else:
|
||||
x_expected_flop = layer.get_flops(1e6)
|
||||
flops.append( x_expected_flop )
|
||||
flops.append( (self.classifier.in_features * self.classifier.out_features*1.0/1e6) )
|
||||
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack( [sum(flops)] )
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
393
models/shape_searchs/SearchCifarResNet_width.py
Normal file
393
models/shape_searchs/SearchCifarResNet_width.py
Normal file
@ -0,0 +1,393 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:,:oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
|
||||
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
#else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
|
||||
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
|
||||
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
|
||||
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None: flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, 'invalid length : {:}'.format(index)
|
||||
# compute expected flop
|
||||
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.has_bn:out= self.BNs[-1]( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2) , out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes*self.expansion:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
|
||||
|
||||
|
||||
class SearchWidthCifarResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, depth, num_classes):
|
||||
super(SearchWidthCifarResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'ResNetBasicblock':
|
||||
block = ResNetBasicblock
|
||||
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
|
||||
layer_blocks = (depth - 2) // 6
|
||||
elif block_name == 'ResNetBottleneck':
|
||||
block = ResNetBottleneck
|
||||
assert (depth - 2) % 9 == 0, 'depth should be one of 164'
|
||||
layer_blocks = (depth - 2) // 9
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
|
||||
self.message = 'SearchWidthCifarResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = 'basic'
|
||||
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
|
||||
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
|
||||
|
||||
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None: config_dict = config_dict.copy()
|
||||
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][ torch.argmax(probe).item() ]
|
||||
elif mode == 'max':
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == 'fix':
|
||||
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
|
||||
elif mode == 'random':
|
||||
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
|
||||
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
channels.append( C )
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple( channels[s:e+1] )
|
||||
flop+= layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict['xchannels'] = channels
|
||||
config_dict['super_type'] = 'infer-width'
|
||||
config_dict['estimated_FLOP'] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
|
||||
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:52s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
|
||||
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append( expected_flop )
|
||||
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack( [sum(flops)] )
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
482
models/shape_searchs/SearchImagenetResNet.py
Normal file
482
models/shape_searchs/SearchImagenetResNet.py
Normal file
@ -0,0 +1,482 @@
|
||||
import math, torch
|
||||
from collections import OrderedDict
|
||||
from bisect import bisect_right
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices
|
||||
|
||||
|
||||
def get_depth_choices(layers):
|
||||
min_depth = min(layers)
|
||||
info = {'num': min_depth}
|
||||
for i, depth in enumerate(layers):
|
||||
choices = []
|
||||
for j in range(1, min_depth+1):
|
||||
choices.append( int( float(depth)*j/min_depth ) )
|
||||
info[i] = choices
|
||||
return info
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:,:oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu, last_max_pool=False):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_width_choices(nOut)
|
||||
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
|
||||
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
#else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
|
||||
if last_max_pool: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
else : self.maxpool = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
|
||||
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
|
||||
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
|
||||
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None: flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, 'invalid length : {:}'.format(index)
|
||||
# compute expected flop
|
||||
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu : out = self.relu( out )
|
||||
if self.maxpool: out = self.maxpool(out)
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.has_bn:out= self.BNs[-1]( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2) , out.size(-1))
|
||||
if self.maxpool: out = self.maxpool(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResNetBasicblock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 2
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBasicblock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_a = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_a.get_range() + self.conv_b.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 3, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv_a.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_b.get_flops([channels[1], channels[2]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_C = channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1]
|
||||
return flop_A + flop_B + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2
|
||||
#import pdb; pdb.set_trace()
|
||||
out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a , expected_inC_a, probability[1], indexes[1], probs[1]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[1], indexes[1], probs[1]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_b)
|
||||
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv_a(inputs)
|
||||
basicblock = self.conv_b(basicblock)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class ResNetBottleneck(nn.Module):
|
||||
expansion = 4
|
||||
num_conv = 3
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(ResNetBottleneck, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv_1x1 = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
self.conv_1x4 = ConvBNReLU(planes, planes*self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=True, has_bn=True, has_relu=False)
|
||||
elif inplanes != planes*self.expansion:
|
||||
self.downsample = ConvBNReLU(inplanes, planes*self.expansion, 1, 1, 0, False, has_avg=False,has_bn=True, has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes * self.expansion
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 4, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv_1x1.get_flops([channels[0], channels[1]])
|
||||
flop_B = self.conv_3x3.get_flops([channels[1], channels[2]])
|
||||
flop_C = self.conv_1x4.get_flops([channels[2], channels[3]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_D = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_D = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_D = channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1]
|
||||
return flop_A + flop_B + flop_C + flop_D
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
bottleneck = self.conv_1x1(inputs)
|
||||
bottleneck = self.conv_3x3(bottleneck)
|
||||
bottleneck = self.conv_1x4(bottleneck)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, bottleneck)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3
|
||||
out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1,expected_inC_1x1, probability[1], indexes[1], probs[1]) )
|
||||
out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3,expected_inC_3x3, probability[2], indexes[2], probs[2]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[2], indexes[2], probs[2]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out_1x4)
|
||||
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
|
||||
|
||||
|
||||
class SearchShapeImagenetResNet(nn.Module):
|
||||
|
||||
def __init__(self, block_name, layers, deep_stem, num_classes):
|
||||
super(SearchShapeImagenetResNet, self).__init__()
|
||||
|
||||
#Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
|
||||
if block_name == 'BasicBlock':
|
||||
block = ResNetBasicblock
|
||||
elif block_name == 'Bottleneck':
|
||||
block = ResNetBottleneck
|
||||
else:
|
||||
raise ValueError('invalid block : {:}'.format(block_name))
|
||||
|
||||
self.message = 'SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}'.format(sum(layers)*block.num_conv, layers)
|
||||
self.num_classes = num_classes
|
||||
if not deep_stem:
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 64, 7, 2, 3, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] )
|
||||
self.channels = [64]
|
||||
else:
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 32, 3, 2, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
,ConvBNReLU(32,64, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True, last_max_pool=True) ] )
|
||||
self.channels = [32, 64]
|
||||
|
||||
meta_depth_info = get_depth_choices(layers)
|
||||
self.InShape = None
|
||||
self.depth_info = OrderedDict()
|
||||
self.depth_at_i = OrderedDict()
|
||||
for stage, layer_blocks in enumerate(layers):
|
||||
cur_block_choices = meta_depth_info[stage]
|
||||
assert cur_block_choices[-1] == layer_blocks, 'stage={:}, {:} vs {:}'.format(stage, cur_block_choices, layer_blocks)
|
||||
block_choices, xstart = [], len(self.layers)
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 64 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = block(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||||
# added for depth
|
||||
layer_index = len(self.layers) - 1
|
||||
if iL + 1 in cur_block_choices: block_choices.append( layer_index )
|
||||
if iL + 1 == layer_blocks:
|
||||
self.depth_info[layer_index] = {'choices': block_choices,
|
||||
'stage' : stage,
|
||||
'xstart' : xstart}
|
||||
self.depth_info_list = []
|
||||
for xend, info in self.depth_info.items():
|
||||
self.depth_info_list.append( (xend, info) )
|
||||
xstart, xstage = info['xstart'], info['stage']
|
||||
for ilayer in range(xstart, xend+1):
|
||||
idx = bisect_right(info['choices'], ilayer-1)
|
||||
self.depth_at_i[ilayer] = (xstage, idx)
|
||||
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = 'basic'
|
||||
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
|
||||
|
||||
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))))
|
||||
self.register_parameter('depth_attentions', nn.Parameter(torch.Tensor(len(layers), meta_depth_info['num'])))
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
nn.init.normal_(self.depth_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self, LR=None):
|
||||
if LR is None:
|
||||
return [self.width_attentions, self.depth_attentions]
|
||||
else:
|
||||
return [
|
||||
{"params": self.width_attentions, "lr": LR},
|
||||
{"params": self.depth_attentions, "lr": LR},
|
||||
]
|
||||
|
||||
def base_parameters(self):
|
||||
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None: config_dict = config_dict.copy()
|
||||
# select channels
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][ torch.argmax(probe).item() ]
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
channels.append( C )
|
||||
# select depth
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
choices = torch.argmax(depth_probs, dim=1).cpu().tolist()
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
selected_layers = []
|
||||
for choice, xvalue in zip(choices, self.depth_info_list):
|
||||
xtemp = xvalue[1]['choices'][choice] - xvalue[1]['xstart'] + 1
|
||||
selected_layers.append(xtemp)
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple( channels[s:e+1] )
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
if xatti <= choices[xstagei]: # leave this depth
|
||||
flop+= layer.get_flops(xchl)
|
||||
else:
|
||||
flop+= 0 # do not use this layer
|
||||
else:
|
||||
flop+= layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict['xchannels'] = channels
|
||||
config_dict['xblocks'] = selected_layers
|
||||
config_dict['super_type'] = 'infer-shape'
|
||||
config_dict['estimated_FLOP'] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for depth and width, there are {:} + {:} attention probabilities.".format(len(self.depth_attentions), len(self.width_attentions))
|
||||
string+= '\n{:}'.format(self.depth_info)
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.depth_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.depth_attentions), ' '.join(prob))
|
||||
logt = ['{:.4f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:17s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || discrepancy={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
string += '\n-----------------------------------------------'
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
|
||||
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:52s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
|
||||
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1)
|
||||
flop_depth_probs = torch.flip( torch.cumsum( torch.flip(flop_depth_probs, [1]), 1 ), [1] )
|
||||
selected_widths, selected_width_probs = select2withP(self.width_attentions, self.tau)
|
||||
selected_depth_probs = select2withP(self.depth_attentions, self.tau, True)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
feature_maps = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths [last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
selected_w_probs = selected_width_probs[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
layer_prob = flop_width_probs [last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
|
||||
feature_maps.append( x )
|
||||
last_channel_idx += layer.num_conv
|
||||
if i in self.depth_info: # aggregate the information
|
||||
choices = self.depth_info[i]['choices']
|
||||
xstagei = self.depth_info[i]['stage']
|
||||
#print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist()))
|
||||
#for A, W in zip(choices, selected_depth_probs[xstagei]):
|
||||
# print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W))
|
||||
possible_tensors = []
|
||||
max_C = max( feature_maps[A].size(1) for A in choices )
|
||||
for tempi, A in enumerate(choices):
|
||||
xtensor = ChannelWiseInter(feature_maps[A], max_C)
|
||||
possible_tensors.append( xtensor )
|
||||
weighted_sum = sum( xtensor * W for xtensor, W in zip(possible_tensors, selected_depth_probs[xstagei]) )
|
||||
x = weighted_sum
|
||||
|
||||
if i in self.depth_at_i:
|
||||
xstagei, xatti = self.depth_at_i[i]
|
||||
x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop
|
||||
else:
|
||||
x_expected_flop = expected_flop
|
||||
flops.append( x_expected_flop )
|
||||
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack( [sum(flops)] )
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
316
models/shape_searchs/SearchSimResNet_width.py
Normal file
316
models/shape_searchs/SearchSimResNet_width.py
Normal file
@ -0,0 +1,316 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
from ..initialization import initialize_resnet
|
||||
from ..SharedUtils import additive_func
|
||||
from .SoftSelect import select2withP, ChannelWiseInter
|
||||
from .SoftSelect import linear_forward
|
||||
from .SoftSelect import get_width_choices as get_choices
|
||||
|
||||
|
||||
def conv_forward(inputs, conv, choices):
|
||||
iC = conv.in_channels
|
||||
fill_size = list(inputs.size())
|
||||
fill_size[1] = iC - fill_size[1]
|
||||
filled = torch.zeros(fill_size, device=inputs.device)
|
||||
xinputs = torch.cat((inputs, filled), dim=1)
|
||||
outputs = conv(xinputs)
|
||||
selecteds = [outputs[:,:oC] for oC in choices]
|
||||
return selecteds
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
num_conv = 1
|
||||
def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.InShape = None
|
||||
self.OutShape = None
|
||||
self.choices = get_choices(nOut)
|
||||
self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
|
||||
|
||||
if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
||||
else : self.avg = None
|
||||
self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
|
||||
#if has_bn : self.bn = nn.BatchNorm2d(nOut)
|
||||
#else : self.bn = None
|
||||
self.has_bn = has_bn
|
||||
self.BNs = nn.ModuleList()
|
||||
for i, _out in enumerate(self.choices):
|
||||
self.BNs.append(nn.BatchNorm2d(_out))
|
||||
if has_relu: self.relu = nn.ReLU(inplace=True)
|
||||
else : self.relu = None
|
||||
self.in_dim = nIn
|
||||
self.out_dim = nOut
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_flops(self, channels, check_range=True, divide=1):
|
||||
iC, oC = channels
|
||||
if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:} | {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
|
||||
assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
|
||||
assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
|
||||
#conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
|
||||
conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
|
||||
all_positions = self.OutShape[0] * self.OutShape[1]
|
||||
flops = (conv_per_position_flops * all_positions / divide) * iC * oC
|
||||
if self.conv.bias is not None: flops += all_positions / divide
|
||||
return flops
|
||||
|
||||
def get_range(self):
|
||||
return [self.choices]
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, index, prob = tuple_inputs
|
||||
index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
|
||||
probability = torch.squeeze(probability)
|
||||
assert len(index) == 2, 'invalid length : {:}'.format(index)
|
||||
# compute expected flop
|
||||
#coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
|
||||
expected_outC = (self.choices_tensor * probability).sum()
|
||||
expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
# convolutional layer
|
||||
out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
|
||||
out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
|
||||
# merge
|
||||
out_channel = max([x.size(1) for x in out_bns])
|
||||
outA = ChannelWiseInter(out_bns[0], out_channel)
|
||||
outB = ChannelWiseInter(out_bns[1], out_channel)
|
||||
out = outA * prob[0] + outB * prob[1]
|
||||
#out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
|
||||
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
return out, expected_outC, expected_flop
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.avg : out = self.avg( inputs )
|
||||
else : out = inputs
|
||||
conv = self.conv( out )
|
||||
if self.has_bn:out= self.BNs[-1]( conv )
|
||||
else : out = conv
|
||||
if self.relu: out = self.relu( out )
|
||||
else : out = out
|
||||
if self.InShape is None:
|
||||
self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
self.OutShape = (out.size(-2) , out.size(-1))
|
||||
return out
|
||||
|
||||
|
||||
class SimBlock(nn.Module):
|
||||
expansion = 1
|
||||
num_conv = 1
|
||||
def __init__(self, inplanes, planes, stride):
|
||||
super(SimBlock, self).__init__()
|
||||
assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
|
||||
self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
|
||||
if stride == 2:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
|
||||
elif inplanes != planes:
|
||||
self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
|
||||
else:
|
||||
self.downsample = None
|
||||
self.out_dim = planes
|
||||
self.search_mode = 'basic'
|
||||
|
||||
def get_range(self):
|
||||
return self.conv.get_range()
|
||||
|
||||
def get_flops(self, channels):
|
||||
assert len(channels) == 2, 'invalid channels : {:}'.format(channels)
|
||||
flop_A = self.conv.get_flops([channels[0], channels[1]])
|
||||
if hasattr(self.downsample, 'get_flops'):
|
||||
flop_C = self.downsample.get_flops([channels[0], channels[-1]])
|
||||
else:
|
||||
flop_C = 0
|
||||
if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
|
||||
flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1]
|
||||
return flop_A + flop_C
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic' : return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search': return self.search_forward(inputs)
|
||||
else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, tuple_inputs):
|
||||
assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
|
||||
inputs, expected_inC, probability, indexes, probs = tuple_inputs
|
||||
assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size())
|
||||
out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC , probability[0], indexes[0], probs[0]) )
|
||||
if self.downsample is not None:
|
||||
residual, _, expected_flop_c = self.downsample( (inputs, expected_inC , probability[-1], indexes[-1], probs[-1]) )
|
||||
else:
|
||||
residual, expected_flop_c = inputs, 0
|
||||
out = additive_func(residual, out)
|
||||
return nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c])
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
basicblock = self.conv(inputs)
|
||||
if self.downsample is not None: residual = self.downsample(inputs)
|
||||
else : residual = inputs
|
||||
out = additive_func(residual, basicblock)
|
||||
return nn.functional.relu(out, inplace=True)
|
||||
|
||||
|
||||
|
||||
class SearchWidthSimResNet(nn.Module):
|
||||
|
||||
def __init__(self, depth, num_classes):
|
||||
super(SearchWidthSimResNet, self).__init__()
|
||||
|
||||
assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth)
|
||||
layer_blocks = (depth - 2) // 3
|
||||
self.message = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
|
||||
self.num_classes = num_classes
|
||||
self.channels = [16]
|
||||
self.layers = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
|
||||
self.InShape = None
|
||||
for stage in range(3):
|
||||
for iL in range(layer_blocks):
|
||||
iC = self.channels[-1]
|
||||
planes = 16 * (2**stage)
|
||||
stride = 2 if stage > 0 and iL == 0 else 1
|
||||
module = SimBlock(iC, planes, stride)
|
||||
self.channels.append( module.out_dim )
|
||||
self.layers.append ( module )
|
||||
self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(8)
|
||||
self.classifier = nn.Linear(module.out_dim, num_classes)
|
||||
self.InShape = None
|
||||
self.tau = -1
|
||||
self.search_mode = 'basic'
|
||||
#assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
|
||||
|
||||
# parameters for width
|
||||
self.Ranges = []
|
||||
self.layer2indexRange = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
start_index = len(self.Ranges)
|
||||
self.Ranges += layer.get_range()
|
||||
self.layer2indexRange.append( (start_index, len(self.Ranges)) )
|
||||
assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
|
||||
|
||||
self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
|
||||
nn.init.normal_(self.width_attentions, 0, 0.01)
|
||||
self.apply(initialize_resnet)
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.width_attentions]
|
||||
|
||||
def base_parameters(self):
|
||||
return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
|
||||
|
||||
def get_flop(self, mode, config_dict, extra_info):
|
||||
if config_dict is not None: config_dict = config_dict.copy()
|
||||
#weights = [F.softmax(x, dim=0) for x in self.width_attentions]
|
||||
channels = [3]
|
||||
for i, weight in enumerate(self.width_attentions):
|
||||
if mode == 'genotype':
|
||||
with torch.no_grad():
|
||||
probe = nn.functional.softmax(weight, dim=0)
|
||||
C = self.Ranges[i][ torch.argmax(probe).item() ]
|
||||
elif mode == 'max':
|
||||
C = self.Ranges[i][-1]
|
||||
elif mode == 'fix':
|
||||
C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
|
||||
elif mode == 'random':
|
||||
assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
|
||||
with torch.no_grad():
|
||||
prob = nn.functional.softmax(weight, dim=0)
|
||||
approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
|
||||
for j in range(prob.size(0)):
|
||||
prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
|
||||
C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
channels.append( C )
|
||||
flop = 0
|
||||
for i, layer in enumerate(self.layers):
|
||||
s, e = self.layer2indexRange[i]
|
||||
xchl = tuple( channels[s:e+1] )
|
||||
flop+= layer.get_flops(xchl)
|
||||
# the last fc layer
|
||||
flop += channels[-1] * self.classifier.out_features
|
||||
if config_dict is None:
|
||||
return flop / 1e6
|
||||
else:
|
||||
config_dict['xchannels'] = channels
|
||||
config_dict['super_type'] = 'infer-width'
|
||||
config_dict['estimated_FLOP'] = flop / 1e6
|
||||
return flop / 1e6, config_dict
|
||||
|
||||
def get_arch_info(self):
|
||||
string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
|
||||
discrepancy = []
|
||||
with torch.no_grad():
|
||||
for i, att in enumerate(self.width_attentions):
|
||||
prob = nn.functional.softmax(att, dim=0)
|
||||
prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
|
||||
prob = ['{:.3f}'.format(x) for x in prob]
|
||||
xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
|
||||
logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
|
||||
xstring += ' || {:52s}'.format(' '.join(logt))
|
||||
prob = sorted( [float(x) for x in prob] )
|
||||
disc = prob[-1] - prob[-2]
|
||||
xstring += ' || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
|
||||
discrepancy.append( disc )
|
||||
string += '\n{:}'.format(xstring)
|
||||
return string, discrepancy
|
||||
|
||||
def set_tau(self, tau_max, tau_min, epoch_ratio):
|
||||
assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
|
||||
tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
|
||||
self.tau = tau
|
||||
|
||||
def get_message(self):
|
||||
return self.message
|
||||
|
||||
def forward(self, inputs):
|
||||
if self.search_mode == 'basic':
|
||||
return self.basic_forward(inputs)
|
||||
elif self.search_mode == 'search':
|
||||
return self.search_forward(inputs)
|
||||
else:
|
||||
raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
|
||||
|
||||
def search_forward(self, inputs):
|
||||
flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
|
||||
selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
|
||||
with torch.no_grad():
|
||||
selected_widths = selected_widths.cpu()
|
||||
|
||||
x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
|
||||
for i, layer in enumerate(self.layers):
|
||||
selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
layer_prob = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
|
||||
x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
|
||||
last_channel_idx += layer.num_conv
|
||||
flops.append( expected_flop )
|
||||
flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = linear_forward(features, self.classifier)
|
||||
return logits, torch.stack( [sum(flops)] )
|
||||
|
||||
def basic_forward(self, inputs):
|
||||
if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
|
||||
x = inputs
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = layer( x )
|
||||
features = self.avgpool(x)
|
||||
features = features.view(features.size(0), -1)
|
||||
logits = self.classifier(features)
|
||||
return features, logits
|
111
models/shape_searchs/SoftSelect.py
Normal file
111
models/shape_searchs/SoftSelect.py
Normal file
@ -0,0 +1,111 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import math, torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
|
||||
if tau <= 0:
|
||||
new_logits = logits
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
else :
|
||||
while True: # a trick to avoid the gumbels bug
|
||||
gumbels = -torch.empty_like(logits).exponential_().log()
|
||||
new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
|
||||
probs = nn.functional.softmax(new_logits, dim=1)
|
||||
if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break
|
||||
|
||||
if just_prob: return probs
|
||||
|
||||
#with torch.no_grad(): # add eps for unexpected torch error
|
||||
# probs = nn.functional.softmax(new_logits, dim=1)
|
||||
# selected_index = torch.multinomial(probs + eps, 2, False)
|
||||
with torch.no_grad(): # add eps for unexpected torch error
|
||||
probs = probs.cpu()
|
||||
selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
|
||||
selected_logit = torch.gather(new_logits, 1, selected_index)
|
||||
selcted_probs = nn.functional.softmax(selected_logit, dim=1)
|
||||
return selected_index, selcted_probs
|
||||
|
||||
|
||||
def ChannelWiseInter(inputs, oC, mode='v2'):
|
||||
if mode == 'v1':
|
||||
return ChannelWiseInterV1(inputs, oC)
|
||||
elif mode == 'v2':
|
||||
return ChannelWiseInterV2(inputs, oC)
|
||||
else:
|
||||
raise ValueError('invalid mode : {:}'.format(mode))
|
||||
|
||||
|
||||
def ChannelWiseInterV1(inputs, oC):
|
||||
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
|
||||
def start_index(a, b, c):
|
||||
return int( math.floor(float(a * c) / b) )
|
||||
def end_index(a, b, c):
|
||||
return int( math.ceil(float((a + 1) * c) / b) )
|
||||
batch, iC, H, W = inputs.size()
|
||||
outputs = torch.zeros((batch, oC, H, W), dtype=inputs.dtype, device=inputs.device)
|
||||
if iC == oC: return inputs
|
||||
for ot in range(oC):
|
||||
istartT, iendT = start_index(ot, oC, iC), end_index(ot, oC, iC)
|
||||
values = inputs[:, istartT:iendT].mean(dim=1)
|
||||
outputs[:, ot, :, :] = values
|
||||
return outputs
|
||||
|
||||
|
||||
def ChannelWiseInterV2(inputs, oC):
|
||||
assert inputs.dim() == 4, 'invalid dimension : {:}'.format(inputs.size())
|
||||
batch, C, H, W = inputs.size()
|
||||
if C == oC: return inputs
|
||||
else : return nn.functional.adaptive_avg_pool3d(inputs, (oC,H,W))
|
||||
#inputs_5D = inputs.view(batch, 1, C, H, W)
|
||||
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'area', None)
|
||||
#otputs = otputs_5D.view(batch, oC, H, W)
|
||||
#otputs_5D = nn.functional.interpolate(inputs_5D, (oC,H,W), None, 'trilinear', False)
|
||||
#return otputs
|
||||
|
||||
|
||||
def linear_forward(inputs, linear):
|
||||
if linear is None: return inputs
|
||||
iC = inputs.size(1)
|
||||
weight = linear.weight[:, :iC]
|
||||
if linear.bias is None: bias = None
|
||||
else : bias = linear.bias
|
||||
return nn.functional.linear(inputs, weight, bias)
|
||||
|
||||
|
||||
def get_width_choices(nOut):
|
||||
xsrange = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
|
||||
if nOut is None:
|
||||
return len(xsrange)
|
||||
else:
|
||||
Xs = [int(nOut * i) for i in xsrange]
|
||||
#xs = [ int(nOut * i // 10) for i in range(2, 11)]
|
||||
#Xs = [x for i, x in enumerate(xs) if i+1 == len(xs) or xs[i+1] > x+1]
|
||||
Xs = sorted( list( set(Xs) ) )
|
||||
return tuple(Xs)
|
||||
|
||||
|
||||
def get_depth_choices(nDepth):
|
||||
if nDepth is None:
|
||||
return 3
|
||||
else:
|
||||
assert nDepth >= 3, 'nDepth should be greater than 2 vs {:}'.format(nDepth)
|
||||
if nDepth == 1 : return (1, 1, 1)
|
||||
elif nDepth == 2: return (1, 1, 2)
|
||||
elif nDepth >= 3:
|
||||
return (nDepth//3, nDepth*2//3, nDepth)
|
||||
else:
|
||||
raise ValueError('invalid Depth : {:}'.format(nDepth))
|
||||
|
||||
|
||||
def drop_path(x, drop_prob):
|
||||
if drop_prob > 0.:
|
||||
keep_prob = 1. - drop_prob
|
||||
mask = x.new_zeros(x.size(0), 1, 1, 1)
|
||||
mask = mask.bernoulli_(keep_prob)
|
||||
x = x * (mask / keep_prob)
|
||||
#x.div_(keep_prob)
|
||||
#x.mul_(mask)
|
||||
return x
|
8
models/shape_searchs/__init__.py
Normal file
8
models/shape_searchs/__init__.py
Normal file
@ -0,0 +1,8 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
from .SearchCifarResNet_width import SearchWidthCifarResNet
|
||||
from .SearchCifarResNet_depth import SearchDepthCifarResNet
|
||||
from .SearchCifarResNet import SearchShapeCifarResNet
|
||||
from .SearchSimResNet_width import SearchWidthSimResNet
|
||||
from .SearchImagenetResNet import SearchShapeImagenetResNet
|
20
models/shape_searchs/test.py
Normal file
20
models/shape_searchs/test.py
Normal file
@ -0,0 +1,20 @@
|
||||
##################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
||||
##################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from SoftSelect import ChannelWiseInter
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
tensors = torch.rand((16, 128, 7, 7))
|
||||
|
||||
for oc in range(200, 210):
|
||||
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
|
||||
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
|
||||
assert (out_v1 == out_v2).any().item() == 1
|
||||
for oc in range(48, 160):
|
||||
out_v1 = ChannelWiseInter(tensors, oc, 'v1')
|
||||
out_v2 = ChannelWiseInter(tensors, oc, 'v2')
|
||||
assert (out_v1 == out_v2).any().item() == 1
|
4
reproduce.sh
Normal file
4
reproduce.sh
Normal file
@ -0,0 +1,4 @@
|
||||
python search.py --dataset cifar10
|
||||
python search.py --dataset cifar10 --trainval
|
||||
python search.py --dataset cifar100
|
||||
python search.py --dataset ImageNet16-120
|
156
search.py
Normal file
156
search.py
Normal file
@ -0,0 +1,156 @@
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import random
|
||||
import numpy as np
|
||||
from tqdm import trange
|
||||
from statistics import mean
|
||||
|
||||
parser = argparse.ArgumentParser(description='NAS Without Training')
|
||||
parser.add_argument('--data_loc', default='../datasets/cifar', type=str, help='dataset folder')
|
||||
parser.add_argument('--api_loc', default='NAS-Bench-201-v1_1-096897.pth',
|
||||
type=str, help='path to API')
|
||||
parser.add_argument('--save_loc', default='results', type=str, help='folder to save results')
|
||||
parser.add_argument('--batch_size', default=256, type=int)
|
||||
parser.add_argument('--GPU', default='0', type=str)
|
||||
parser.add_argument('--seed', default=1, type=int)
|
||||
parser.add_argument('--trainval', action='store_true')
|
||||
parser.add_argument('--dataset', default='cifar10', type=str)
|
||||
parser.add_argument('--n_samples', default=100, type=int)
|
||||
parser.add_argument('--n_runs', default=500, type=int)
|
||||
|
||||
args = parser.parse_args()
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
import torchvision.datasets as datasets
|
||||
import torch.optim as optim
|
||||
|
||||
from models import get_cell_based_tiny_net
|
||||
|
||||
# Reproducibility
|
||||
torch.backends.cudnn.deterministic = True
|
||||
torch.backends.cudnn.benchmark = False
|
||||
random.seed(args.seed)
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
|
||||
import torchvision.transforms as transforms
|
||||
from datasets import get_datasets
|
||||
from nas_201_api import NASBench201API as API
|
||||
|
||||
def get_batch_jacobian(net, x, target, to, device, args=None):
|
||||
net.zero_grad()
|
||||
|
||||
x.requires_grad_(True)
|
||||
|
||||
_, y = net(x)
|
||||
|
||||
y.backward(torch.ones_like(y))
|
||||
jacob = x.grad.detach()
|
||||
|
||||
return jacob, target.detach()
|
||||
|
||||
|
||||
def evidenceapprox_eval_score(jacob, labels=None):
|
||||
corrs = np.corrcoef(jacob)
|
||||
v, _ = np.linalg.eig(corrs)
|
||||
k = 1e-5
|
||||
return -np.sum(np.log(v + k) + 1./(v + k))
|
||||
|
||||
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
print(device)
|
||||
THE_START = time.time()
|
||||
api = API(args.api_loc)
|
||||
|
||||
os.makedirs(args.save_loc, exist_ok=True)
|
||||
|
||||
train_data, valid_data, xshape, class_num = get_datasets(args.dataset, args.data_loc, cutout=0)
|
||||
|
||||
if args.dataset == 'cifar10':
|
||||
acc_type = 'ori-test'
|
||||
val_acc_type = 'x-valid'
|
||||
|
||||
else:
|
||||
acc_type = 'x-test'
|
||||
val_acc_type = 'x-valid'
|
||||
|
||||
if args.trainval:
|
||||
cifar_split = load_config('config_utils/cifar-split.txt', None, None)
|
||||
train_split, valid_split = cifar_split.train, cifar_split.valid
|
||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
|
||||
num_workers=0, pin_memory=True, sampler= torch.utils.data.sampler.SubsetRandomSampler(train_split))
|
||||
|
||||
else:
|
||||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
|
||||
num_workers=0, pin_memory=True)
|
||||
|
||||
times = []
|
||||
chosen = []
|
||||
acc = []
|
||||
val_acc = []
|
||||
topscores = []
|
||||
|
||||
dset = args.dataset if not args.trainval else 'cifar10-valid'
|
||||
|
||||
order_fn = np.nanargmax
|
||||
|
||||
runs = trange(args.n_runs, desc='acc: ')
|
||||
for N in runs:
|
||||
start = time.time()
|
||||
indices = np.random.randint(0,15625,args.n_samples)
|
||||
scores = []
|
||||
|
||||
for arch in indices:
|
||||
|
||||
data_iterator = iter(train_loader)
|
||||
x, target = next(data_iterator)
|
||||
x, target = x.to(device), target.to(device)
|
||||
|
||||
config = api.get_net_config(arch, args.dataset)
|
||||
config['num_classes'] = 1
|
||||
|
||||
network = get_cell_based_tiny_net(config) # create the network from configuration
|
||||
network = network.to(device)
|
||||
network.eval()
|
||||
|
||||
jacobs, labels= get_batch_jacobian(network, x, target, 1, device, args)
|
||||
jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy()
|
||||
|
||||
try:
|
||||
s = evidenceapprox_eval_score(jacobs, labels)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
s = np.nan
|
||||
|
||||
scores.append(s)
|
||||
|
||||
best_arch = indices[order_fn(scores)]
|
||||
info = api.query_by_index(best_arch)
|
||||
topscores.append(scores[order_fn(scores)])
|
||||
chosen.append(best_arch)
|
||||
acc.append(info.get_metrics(dset, acc_type)['accuracy'])
|
||||
|
||||
if not args.dataset == 'cifar10' or args.trainval:
|
||||
val_acc.append(info.get_metrics(dset, val_acc_type)['accuracy'])
|
||||
|
||||
times.append(time.time()-start)
|
||||
runs.set_description(f"acc: {mean(acc if not args.trainval else val_acc):.2f}%")
|
||||
|
||||
print(f"Final mean test accuracy: {np.mean(acc)}")
|
||||
if len(val_acc) > 1:
|
||||
print(f"Final mean validation accuracy: {np.mean(val_acc)}")
|
||||
|
||||
state = {'accs': acc,
|
||||
'val_accs': val_acc,
|
||||
'chosen': chosen,
|
||||
'times': times,
|
||||
'topscores': topscores,
|
||||
}
|
||||
|
||||
dset = args.dataset if not args.trainval else 'cifar10-valid'
|
||||
fname = f"{args.save_loc}/{dset}_{args.n_runs}_{args.n_samples}_{args.mc_samples}_{args.alpha}_{args.seed}.t7"
|
||||
torch.save(state, fname)
|
Loading…
Reference in New Issue
Block a user