Merge branch 'master' of github.com:BayesWatch/nas-without-training
This commit is contained in:
		
							
								
								
									
										21
									
								
								LICENCE
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								LICENCE
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,21 @@ | |||||||
|  | MIT License | ||||||
|  |  | ||||||
|  | Copyright (c) 2020 Anonymous Authors | ||||||
|  |  | ||||||
|  | Permission is hereby granted, free of charge, to any person obtaining a copy | ||||||
|  | of this software and associated documentation files (the "Software"), to deal | ||||||
|  | in the Software without restriction, including without limitation the rights | ||||||
|  | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||||||
|  | copies of the Software, and to permit persons to whom the Software is | ||||||
|  | furnished to do so, subject to the following conditions: | ||||||
|  |  | ||||||
|  | The above copyright notice and this permission notice shall be included in all | ||||||
|  | copies or substantial portions of the Software. | ||||||
|  |  | ||||||
|  | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||||||
|  | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||||||
|  | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||||||
|  | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||||||
|  | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||||||
|  | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||||||
|  | SOFTWARE. | ||||||
| @@ -12,3 +12,5 @@ conda env create -f environment.yml | |||||||
| conda activate nas-wot | conda activate nas-wot | ||||||
| ./reproduce.sh | ./reproduce.sh | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
|  | The code is licensed under the MIT licence. | ||||||
|   | |||||||
| @@ -1,4 +1,4 @@ | |||||||
| python search.py --dataset cifar10 | python search.py --dataset cifar10 --data_loc '../datasets/cifar10' | ||||||
| python search.py --dataset cifar10 --trainval | python search.py --dataset cifar10 --trainval --data_loc '../datasets/cifar10' | ||||||
| python search.py --dataset cifar100 | python search.py --dataset cifar100 --data_loc '../datasets/cifar100' | ||||||
| python search.py --dataset ImageNet16-120 | python search.py --dataset ImageNet16-120 --data_loc '../datasets/ImageNet16' | ||||||
|   | |||||||
| @@ -55,7 +55,7 @@ def get_batch_jacobian(net, x, target, to, device, args=None): | |||||||
|     return jacob, target.detach() |     return jacob, target.detach() | ||||||
|  |  | ||||||
|  |  | ||||||
| def evidenceapprox_eval_score(jacob, labels=None): | def eval_score(jacob, labels=None): | ||||||
|     corrs = np.corrcoef(jacob) |     corrs = np.corrcoef(jacob) | ||||||
|     v, _  = np.linalg.eig(corrs) |     v, _  = np.linalg.eig(corrs) | ||||||
|     k = 1e-5 |     k = 1e-5 | ||||||
| @@ -122,7 +122,7 @@ for N in runs: | |||||||
|         jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy() |         jacobs = jacobs.reshape(jacobs.size(0), -1).cpu().numpy() | ||||||
|  |  | ||||||
|         try: |         try: | ||||||
|             s = evidenceapprox_eval_score(jacobs, labels) |             s = eval_score(jacobs, labels) | ||||||
|         except Exception as e: |         except Exception as e: | ||||||
|             print(e) |             print(e) | ||||||
|             s = np.nan |             s = np.nan | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user