# MobileNetV2: Inverted Residuals and Linear Bottlenecks, CVPR 2018 from torch import nn from .initialization import initialize_resnet class ConvBNReLU(nn.Module): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): super(ConvBNReLU, self).__init__() padding = (kernel_size - 1) // 2 self.conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False) self.bn = nn.BatchNorm2d(out_planes) self.relu = nn.ReLU6(inplace=True) def forward(self, x): out = self.conv( x ) out = self.bn ( out ) out = self.relu( out ) return out class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) class MobileNetV2(nn.Module): def __init__(self, num_classes, width_mult, input_channel, last_channel, block_name, dropout): super(MobileNetV2, self).__init__() if block_name == 'InvertedResidual': block = InvertedResidual else: raise ValueError('invalid block name : {:}'.format(block_name)) inverted_residual_setting = [ # t, c, n, s [1, 16 , 1, 1], [6, 24 , 2, 2], [6, 32 , 3, 2], [6, 64 , 4, 2], [6, 96 , 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # building first layer input_channel = int(input_channel * width_mult) self.last_channel = int(last_channel * max(1.0, width_mult)) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = int(c * width_mult) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier self.classifier = nn.Sequential( nn.Dropout(dropout), nn.Linear(self.last_channel, num_classes), ) self.message = 'MobileNetV2 : width_mult={:}, in-C={:}, last-C={:}, block={:}, dropout={:}'.format(width_mult, input_channel, last_channel, block_name, dropout) # weight initialization self.apply( initialize_resnet ) def get_message(self): return self.message def forward(self, inputs): features = self.features(inputs) vectors = features.mean([2, 3]) predicts = self.classifier(vectors) return features, predicts