##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ##################################################### import torch import torch.nn as nn from copy import deepcopy from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR # The macro structure is based on NASNet class NASNetonCIFAR(nn.Module): def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True): super(NASNetonCIFAR, self).__init__() self._C = C self._layerN = N self.stem = nn.Sequential( nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C*stem_multiplier)) # config for each layer layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1) layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False self.auxiliary_index = None self.auxiliary_head = None self.cells = nn.ModuleList() for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) self.cells.append( cell ) C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction if reduction and C_curr == C*4 and auxiliary: self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes) self.auxiliary_index = index self._Layer = len(self.cells) self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) self.drop_path_prob = -1 def update_drop_path(self, drop_path_prob): self.drop_path_prob = drop_path_prob def auxiliary_param(self): if self.auxiliary_head is None: return [] else: return list( self.auxiliary_head.parameters() ) def get_message(self): string = self.extra_repr() for i, cell in enumerate(self.cells): string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) return string def extra_repr(self): return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) def forward(self, inputs): stem_feature, logits_aux = self.stem(inputs), None cell_results = [stem_feature, stem_feature] for i, cell in enumerate(self.cells): cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob) cell_results.append( cell_feature ) if self.auxiliary_index is not None and i == self.auxiliary_index and self.training: logits_aux = self.auxiliary_head( cell_results[-1] ) out = self.lastact(cell_results[-1]) out = self.global_pooling( out ) out = out.view(out.size(0), -1) logits = self.classifier(out) if logits_aux is None: return out, logits else: return out, [logits, logits_aux]