##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ##################################################### import torch.nn as nn from ..cell_operations import ResNetBasicblock from .cells import InferCell # The macro structure for architectures in NAS-Bench-201 class TinyNetwork(nn.Module): def __init__(self, C, N, genotype, num_classes): super(TinyNetwork, self).__init__() self._C = C self._layerN = N self.stem = nn.Sequential( nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)) layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N C_prev = C self.cells = nn.ModuleList() for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): if reduction: cell = ResNetBasicblock(C_prev, C_curr, 2, True) else: cell = InferCell(genotype, C_prev, C_curr, 1) self.cells.append( cell ) C_prev = cell.out_dim self._Layer= len(self.cells) self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) def get_message(self): string = self.extra_repr() for i, cell in enumerate(self.cells): string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) return string def extra_repr(self): return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) def forward(self, inputs): feature = self.stem(inputs) for i, cell in enumerate(self.cells): feature = cell(feature) out = self.lastact(feature) out = self.global_pooling( out ) out = out.view(out.size(0), -1) logits = self.classifier(out) return logits, out