##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ###################################################################################### # One-Shot Neural Architecture Search via Self-Evaluated Template Network, ICCV 2019 # ###################################################################################### import torch import torch.nn as nn from copy import deepcopy from typing import List, Text, Dict from .search_cells import NASNetSearchCell as SearchCell # The macro structure is based on NASNet class NASNetworkSETN(nn.Module): def __init__(self, C: int, N: int, steps: int, multiplier: int, stem_multiplier: int, num_classes: int, search_space: List[Text], affine: bool, track_running_stats: bool): super(NASNetworkSETN, self).__init__() self._C = C self._layerN = N self._steps = steps self._multiplier = multiplier self.stem = nn.Sequential( nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C*stem_multiplier)) # config for each layer layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1) layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) num_edge, edge2index = None, None C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False self.cells = nn.ModuleList() for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) self.cells.append( cell ) C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction self.op_names = deepcopy( search_space ) self._Layer = len(self.cells) self.edge2index = edge2index self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) self.mode = 'urs' self.dynamic_cell = None def set_cal_mode(self, mode, dynamic_cell=None): assert mode in ['urs', 'joint', 'select', 'dynamic'] self.mode = mode if mode == 'dynamic': self.dynamic_cell = deepcopy(dynamic_cell) else: self.dynamic_cell = None def get_weights(self): xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) xlist+= list( self.classifier.parameters() ) return xlist def get_alphas(self): return [self.arch_normal_parameters, self.arch_reduce_parameters] def show_alphas(self): with torch.no_grad(): A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() ) B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() ) return '{:}\n{:}'.format(A, B) def get_message(self): string = self.extra_repr() for i, cell in enumerate(self.cells): string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) return string def extra_repr(self): return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) def dync_genotype(self, use_random=False): genotypes = [] with torch.no_grad(): alphas_cpu = nn.functional.softmax(self.arch_parameters, dim=-1) for i in range(1, self.max_nodes): xlist = [] for j in range(i): node_str = '{:}<-{:}'.format(i, j) if use_random: op_name = random.choice(self.op_names) else: weights = alphas_cpu[ self.edge2index[node_str] ] op_index = torch.multinomial(weights, 1).item() op_name = self.op_names[ op_index ] xlist.append((op_name, j)) genotypes.append( tuple(xlist) ) return Structure( genotypes ) def genotype(self): def _parse(weights): gene = [] for i in range(self._steps): edges = [] for j in range(2+i): node_str = '{:}<-{:}'.format(i, j) ws = weights[ self.edge2index[node_str] ] for k, op_name in enumerate(self.op_names): if op_name == 'none': continue edges.append( (op_name, j, ws[k]) ) edges = sorted(edges, key=lambda x: -x[-1]) selected_edges = edges[:2] gene.append( tuple(selected_edges) ) return gene with torch.no_grad(): gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy()) gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy()) return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)), 'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} def forward(self, inputs): normal_hardwts = nn.functional.softmax(self.arch_normal_parameters, dim=-1) reduce_hardwts = nn.functional.softmax(self.arch_reduce_parameters, dim=-1) s0 = s1 = self.stem(inputs) for i, cell in enumerate(self.cells): # [TODO] raise NotImplementedError if cell.reduction: hardwts, index = reduce_hardwts, reduce_index else : hardwts, index = normal_hardwts, normal_index s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) out = self.lastact(s1) out = self.global_pooling( out ) out = out.view(out.size(0), -1) logits = self.classifier(out) return out, logits