##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # ############################################################################################ # NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # ############################################################################################ # The history of benchmark files: # [2020.02.25] NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID. # [2020.03.16] NAS-Bench-201-v1_1-096897.pth : 2225 architectures are trained once, 5439 archiitectures are trained twice, 7961 architectures are trained three times on all training sets. For the hyper-parameters with the total epochs of 12, each model is trained on CIFAR-10, CIFAR-100, ImageNet16-120 once, and is trained on CIFAR-10-VALID twice. # # I'm still actively enhancing our benchmark, while for the future benchmark file, please follow news from NATS-Bench (an extended version of NAS-Bench-201). # import os, copy, random, torch, numpy as np from pathlib import Path from typing import List, Text, Union, Dict, Optional from collections import OrderedDict, defaultdict from .api_utils import ArchResults from .api_utils import NASBenchMetaAPI from .api_utils import remap_dataset_set_names ALL_BENCHMARK_FILES = ['NAS-Bench-201-v1_0-e61699.pth', 'NAS-Bench-201-v1_1-096897.pth'] ALL_ARCHIVE_DIRS = ['NAS-Bench-201-v1_1-archive'] def print_information(information, extra_info=None, show=False): dataset_names = information.get_dataset_names() strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)] def metric2str(loss, acc): return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc) for ida, dataset in enumerate(dataset_names): metric = information.get_compute_costs(dataset) flop, param, latency = metric['flops'], metric['params'], metric['latency'] str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None) train_info = information.get_metrics(dataset, 'train') if dataset == 'cifar10-valid': valid_info = information.get_metrics(dataset, 'x-valid') str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy'])) elif dataset == 'cifar10': test__info = information.get_metrics(dataset, 'ori-test') str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) else: valid_info = information.get_metrics(dataset, 'x-valid') test__info = information.get_metrics(dataset, 'x-test') str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy'])) strings += [str1, str2] if show: print('\n'.join(strings)) return strings """ This is the class for the API of NAS-Bench-201. """ class NASBench201API(NASBenchMetaAPI): """ The initialization function that takes the dataset file path (or a dict loaded from that path) as input. """ def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True): self.filename = None self.reset_time() if file_path_or_dict is None: file_path_or_dict = os.path.join(os.environ['TORCH_HOME'], ALL_BENCHMARK_FILES[-1]) print ('Try to use the default NAS-Bench-201 path from {:}.'.format(file_path_or_dict)) if isinstance(file_path_or_dict, str) or isinstance(file_path_or_dict, Path): file_path_or_dict = str(file_path_or_dict) if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict)) assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict) self.filename = Path(file_path_or_dict).name file_path_or_dict = torch.load(file_path_or_dict, map_location='cpu') elif isinstance(file_path_or_dict, dict): file_path_or_dict = copy.deepcopy(file_path_or_dict) else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict))) assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict)) self.verbose = verbose # [TODO] a flag indicating whether to print more logs keys = ('meta_archs', 'arch2infos', 'evaluated_indexes') for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key) self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] ) # This is a dict mapping each architecture to a dict, where the key is #epochs and the value is ArchResults self.arch2infos_dict = OrderedDict() self._avaliable_hps = set(['12', '200']) for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())): all_info = file_path_or_dict['arch2infos'][xkey] hp2archres = OrderedDict() # self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] ) # self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] ) hp2archres['12'] = ArchResults.create_from_state_dict(all_info['less']) hp2archres['200'] = ArchResults.create_from_state_dict(all_info['full']) self.arch2infos_dict[xkey] = hp2archres self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes'])) self.archstr2index = {} for idx, arch in enumerate(self.meta_archs): assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch]) self.archstr2index[ arch ] = idx def reload(self, archive_root: Text = None, index: int = None): """Overwrite all information of the 'index'-th architecture in the search space. It will load its data from 'archive_root'. """ if archive_root is None: archive_root = os.path.join(os.environ['TORCH_HOME'], ALL_ARCHIVE_DIRS[-1]) assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root) if index is None: indexes = list(range(len(self))) else: indexes = [index] for idx in indexes: assert 0 <= idx < len(self.meta_archs), 'invalid index of {:}'.format(idx) xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(idx)) assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path) xdata = torch.load(xfile_path, map_location='cpu') assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path) hp2archres = OrderedDict() hp2archres['12'] = ArchResults.create_from_state_dict(xdata['less']) hp2archres['200'] = ArchResults.create_from_state_dict(xdata['full']) self.arch2infos_dict[idx] = hp2archres def query_info_str_by_arch(self, arch, hp: Text='12'): """ This function is used to query the information of a specific architecture 'arch' can be an architecture index or an architecture string When hp=12, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/12E.config' When hp=200, the hyper-parameters used to train a model are in 'configs/nas-benchmark/hyper-opts/200E.config' The difference between these three configurations are the number of training epochs. """ if self.verbose: print('Call query_info_str_by_arch with arch={:} and hp={:}'.format(arch, hp)) return self._query_info_str_by_arch(arch, hp, print_information) # obtain the metric for the `index`-th architecture # `dataset` indicates the dataset: # 'cifar10-valid' : using the proposed train set of CIFAR-10 as the training set # 'cifar10' : using the proposed train+valid set of CIFAR-10 as the training set # 'cifar100' : using the proposed train set of CIFAR-100 as the training set # 'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set # `iepoch` indicates the index of training epochs from 0 to 11/199. # When iepoch=None, it will return the metric for the last training epoch # When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0) # `use_12epochs_result` indicates different hyper-parameters for training # When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs # When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs # `is_random` # When is_random=True, the performance of a random architecture will be returned # When is_random=False, the performanceo of all trials will be averaged. def get_more_info(self, index, dataset, iepoch=None, hp='12', is_random=True): if self.verbose: print('Call the get_more_info function with index={:}, dataset={:}, iepoch={:}, hp={:}, and is_random={:}.'.format(index, dataset, iepoch, hp, is_random)) index = self.query_index_by_arch(index) # To avoid the input is a string or an instance of a arch object if index not in self.arch2infos_dict: raise ValueError('Did not find {:} from arch2infos_dict.'.format(index)) archresult = self.arch2infos_dict[index][str(hp)] # if randomly select one trial, select the seed at first if isinstance(is_random, bool) and is_random: seeds = archresult.get_dataset_seeds(dataset) is_random = random.choice(seeds) # collect the training information train_info = archresult.get_metrics(dataset, 'train', iepoch=iepoch, is_random=is_random) total = train_info['iepoch'] + 1 xinfo = {'train-loss' : train_info['loss'], 'train-accuracy': train_info['accuracy'], 'train-per-time': train_info['all_time'] / total if train_info['all_time'] is not None else None, 'train-all-time': train_info['all_time']} # collect the evaluation information if dataset == 'cifar10-valid': valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) try: test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) except: test_info = None valtest_info = None else: try: # collect results on the proposed test set if dataset == 'cifar10': test_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) else: test_info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) except: test_info = None try: # collect results on the proposed validation set valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) except: valid_info = None try: if dataset != 'cifar10': valtest_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random) else: valtest_info = None except: valtest_info = None if valid_info is not None: xinfo['valid-loss'] = valid_info['loss'] xinfo['valid-accuracy'] = valid_info['accuracy'] xinfo['valid-per-time'] = valid_info['all_time'] / total if valid_info['all_time'] is not None else None xinfo['valid-all-time'] = valid_info['all_time'] if test_info is not None: xinfo['test-loss'] = test_info['loss'] xinfo['test-accuracy'] = test_info['accuracy'] xinfo['test-per-time'] = test_info['all_time'] / total if test_info['all_time'] is not None else None xinfo['test-all-time'] = test_info['all_time'] if valtest_info is not None: xinfo['valtest-loss'] = valtest_info['loss'] xinfo['valtest-accuracy'] = valtest_info['accuracy'] xinfo['valtest-per-time'] = valtest_info['all_time'] / total if valtest_info['all_time'] is not None else None xinfo['valtest-all-time'] = valtest_info['all_time'] return xinfo def show(self, index: int = -1) -> None: """This function will print the information of a specific (or all) architecture(s).""" self._show(index, print_information) @staticmethod def str2lists(arch_str: Text) -> List[tuple]: """ This function shows how to read the string-based architecture encoding. It is the same as the `str2structure` func in `AutoDL-Projects/lib/models/cell_searchs/genotypes.py` :param arch_str: the input is a string indicates the architecture topology, such as |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| :return: a list of tuple, contains multiple (op, input_node_index) pairs. :usage arch = api.str2lists( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) print ('there are {:} nodes in this arch'.format(len(arch)+1)) # arch is a list for i, node in enumerate(arch): print('the {:}-th node is the sum of these {:} nodes with op: {:}'.format(i+1, len(node), node)) """ node_strs = arch_str.split('+') genotypes = [] for i, node_str in enumerate(node_strs): inputs = list(filter(lambda x: x != '', node_str.split('|'))) for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) inputs = ( xi.split('~') for xi in inputs ) input_infos = tuple( (op, int(IDX)) for (op, IDX) in inputs) genotypes.append( input_infos ) return genotypes @staticmethod def str2matrix(arch_str: Text, search_space: List[Text] = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']) -> np.ndarray: """ This func shows how to convert the string-based architecture encoding to the encoding strategy in NAS-Bench-101. :param arch_str: the input is a string indicates the architecture topology, such as |nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2| search_space: a list of operation string, the default list is the search space for NAS-Bench-201 the default value should be be consistent with this line https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/models/cell_operations.py#L24 :return the numpy matrix (2-D np.ndarray) representing the DAG of this architecture topology :usage matrix = api.str2matrix( '|nor_conv_1x1~0|+|none~0|none~1|+|none~0|none~1|skip_connect~2|' ) This matrix is 4-by-4 matrix representing a cell with 4 nodes (only the lower left triangle is useful). [ [0, 0, 0, 0], # the first line represents the input (0-th) node [2, 0, 0, 0], # the second line represents the 1-st node, is calculated by 2-th-op( 0-th-node ) [0, 0, 0, 0], # the third line represents the 2-nd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) [0, 0, 1, 0] ] # the fourth line represents the 3-rd node, is calculated by 0-th-op( 0-th-node ) + 0-th-op( 1-th-node ) + 1-th-op( 2-th-node ) In NAS-Bench-201 search space, 0-th-op is 'none', 1-th-op is 'skip_connect', 2-th-op is 'nor_conv_1x1', 3-th-op is 'nor_conv_3x3', 4-th-op is 'avg_pool_3x3'. :(NOTE) If a node has two input-edges from the same node, this function does not work. One edge will be overlapped. """ node_strs = arch_str.split('+') num_nodes = len(node_strs) + 1 matrix = np.zeros((num_nodes, num_nodes)) for i, node_str in enumerate(node_strs): inputs = list(filter(lambda x: x != '', node_str.split('|'))) for xinput in inputs: assert len(xinput.split('~')) == 2, 'invalid input length : {:}'.format(xinput) for xi in inputs: op, idx = xi.split('~') if op not in search_space: raise ValueError('this op ({:}) is not in {:}'.format(op, search_space)) op_idx, node_idx = search_space.index(op), int(idx) matrix[i+1, node_idx] = op_idx return matrix