##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 # ############################################################################################ # NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 # ############################################################################################ # In this Python file, we define NASBenchMetaAPI, the abstract class for benchmark APIs. # We also define the class ArchResults, which contains all information of a single architecture trained by one kind of hyper-parameters on three datasets. # We also define the class ResultsCount, which contains all information of a single trial for a single architecture. ############################################################################################ # import os, abc, copy, random, torch, numpy as np from pathlib import Path from typing import List, Text, Union, Dict, Optional from collections import OrderedDict, defaultdict def remap_dataset_set_names(dataset, metric_on_set, verbose=False): """re-map the metric_on_set to internal keys""" if verbose: print('Call internal function _remap_dataset_set_names with dataset={:} and metric_on_set={:}'.format(dataset, metric_on_set)) if dataset == 'cifar10' and metric_on_set == 'valid': dataset, metric_on_set = 'cifar10-valid', 'x-valid' elif dataset == 'cifar10' and metric_on_set == 'test': dataset, metric_on_set = 'cifar10', 'ori-test' elif dataset == 'cifar10' and metric_on_set == 'train': dataset, metric_on_set = 'cifar10', 'train' elif (dataset == 'cifar100' or dataset == 'ImageNet16-120') and metric_on_set == 'valid': metric_on_set = 'x-valid' elif (dataset == 'cifar100' or dataset == 'ImageNet16-120') and metric_on_set == 'test': metric_on_set = 'x-test' if verbose: print(' return dataset={:} and metric_on_set={:}'.format(dataset, metric_on_set)) return dataset, metric_on_set class NASBenchMetaAPI(metaclass=abc.ABCMeta): @abc.abstractmethod def __init__(self, file_path_or_dict: Optional[Union[Text, Dict]]=None, verbose: bool=True): """The initialization function that takes the dataset file path (or a dict loaded from that path) as input.""" def __getitem__(self, index: int): return copy.deepcopy(self.meta_archs[index]) def arch(self, index: int): """Return the topology structure of the `index`-th architecture.""" if self.verbose: print('Call the arch function with index={:}'.format(index)) assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs)) return copy.deepcopy(self.meta_archs[index]) def __len__(self): return len(self.meta_archs) def __repr__(self): return ('{name}({num}/{total} architectures, file={filename})'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs), filename=self.filename)) @property def avaliable_hps(self): return list(copy.deepcopy(self._avaliable_hps)) @property def used_time(self): return self._used_time def reset_time(self): self._used_time = 0 def simulate_train_eval(self, arch, dataset, iepoch=None, hp='12', account_time=True): index = self.query_index_by_arch(arch) all_names = ('cifar10', 'cifar100', 'ImageNet16-120') assert dataset in all_names, 'Invalid dataset name : {:} vs {:}'.format(dataset, all_names) if dataset == 'cifar10': info = self.get_more_info(index, 'cifar10-valid', iepoch=iepoch, hp=hp, is_random=True) else: info = self.get_more_info(index, dataset, iepoch=iepoch, hp=hp, is_random=True) valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] latency = self.get_latency(index, dataset) if account_time: self._used_time += time_cost return valid_acc, latency, time_cost, self._used_time def random(self): """Return a random index of all architectures.""" return random.randint(0, len(self.meta_archs)-1) def query_index_by_arch(self, arch): """ This function is used to query the index of an architecture in the search space. In the topology search space, the input arch can be an architecture string such as '|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|'; or an instance that has the 'tostr' function that can generate the architecture string; or it is directly an architecture index, in this case, we will check whether it is valid or not. This function will return the index. If return -1, it means this architecture is not in the search space. Otherwise, it will return an int in [0, the-number-of-candidates-in-the-search-space). """ if self.verbose: print('Call query_index_by_arch with arch={:}'.format(arch)) if isinstance(arch, int): if 0 <= arch < len(self): return arch else: raise ValueError('Invalid architecture index {:} vs [{:}, {:}].'.format(arch, 0, len(self))) elif isinstance(arch, str): if arch in self.archstr2index: arch_index = self.archstr2index[ arch ] else : arch_index = -1 elif hasattr(arch, 'tostr'): if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ] else : arch_index = -1 else: arch_index = -1 return arch_index def query_by_arch(self, arch, hp): # This is to make the current version be compatible with the old version. return self.query_info_str_by_arch(arch, hp) @abc.abstractmethod def reload(self, archive_root: Text = None, index: int = None): """Overwrite all information of the 'index'-th architecture in the search space, where the data will be loaded from 'archive_root'. If index is None, overwrite all ckps. """ def clear_params(self, index: int, hp: Optional[Text]=None): """Remove the architecture's weights to save memory. :arg index: the index of the target architecture hp: a flag to controll how to clear the parameters. -- None: clear all the weights in '01'/'12'/'90', which indicates the number of training epochs. -- '01' or '12' or '90': clear all the weights in arch2infos_dict[index][hp]. """ if self.verbose: print('Call clear_params with index={:} and hp={:}'.format(index, hp)) if hp is None: for key, result in self.arch2infos_dict[index].items(): result.clear_params() else: if str(hp) not in self.arch2infos_dict[index]: raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(index, list(self.arch2infos_dict[index].keys()), hp)) self.arch2infos_dict[index][str(hp)].clear_params() @abc.abstractmethod def query_info_str_by_arch(self, arch, hp: Text='12'): """This function is used to query the information of a specific architecture.""" def _query_info_str_by_arch(self, arch, hp: Text='12', print_information=None): arch_index = self.query_index_by_arch(arch) if arch_index in self.arch2infos_dict: if hp not in self.arch2infos_dict[arch_index]: raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(index, list(self.arch2infos_dict[arch_index].keys()), hp)) info = self.arch2infos_dict[arch_index][hp] strings = print_information(info, 'arch-index={:}'.format(arch_index)) return '\n'.join(strings) else: print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index)) return None def query_meta_info_by_index(self, arch_index, hp: Text = '12'): """Return the ArchResults for the 'arch_index'-th architecture. This function is similar to query_by_index.""" if self.verbose: print('Call query_meta_info_by_index with arch_index={:}, hp={:}'.format(arch_index, hp)) if arch_index in self.arch2infos_dict: if hp not in self.arch2infos_dict[arch_index]: raise ValueError('The {:}-th architecture only has hyper-parameters of {:} instead of {:}.'.format(arch_index, list(self.arch2infos_dict[arch_index].keys()), hp)) info = self.arch2infos_dict[arch_index][hp] else: raise ValueError('arch_index [{:}] does not in arch2infos'.format(arch_index)) return copy.deepcopy(info) def query_by_index(self, arch_index: int, dataname: Union[None, Text] = None, hp: Text = '12'): """ This 'query_by_index' function is used to query information with the training of 01 epochs, 12 epochs, 90 epochs, or 200 epochs. ------ If hp=01, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/01E.config) If hp=12, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/12E.config) If hp=90, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/90E.config) If hp=200, we train the model by 01 epochs (see config in configs/nas-benchmark/hyper-opts/200E.config) ------ If dataname is None, return the ArchResults else, return a dict with all trials on that dataset (the key is the seed) Options are 'cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'. -- cifar10-valid : training the model on the CIFAR-10 training set. -- cifar10 : training the model on the CIFAR-10 training + validation set. -- cifar100 : training the model on the CIFAR-100 training set. -- ImageNet16-120 : training the model on the ImageNet16-120 training set. """ if self.verbose: print('Call query_by_index with arch_index={:}, dataname={:}, hp={:}'.format(arch_index, dataname, hp)) info = self.query_meta_info_by_index(arch_index, hp) if dataname is None: return info else: if dataname not in info.get_dataset_names(): raise ValueError('invalid dataset-name : {:} vs. {:}'.format(dataname, info.get_dataset_names())) return info.query(dataname) def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, hp: Text = '12'): """Find the architecture with the highest accuracy based on some constraints.""" if self.verbose: print('Call find_best with dataset={:}, metric_on_set={:}, hp={:} | with #FLOPs < {:} and #Params < {:}'.format(dataset, metric_on_set, hp, FLOP_max, Param_max)) dataset, metric_on_set = remap_dataset_set_names(dataset, metric_on_set, self.verbose) best_index, highest_accuracy = -1, None for i, arch_index in enumerate(self.evaluated_indexes): arch_info = self.arch2infos_dict[arch_index][hp] info = arch_info.get_compute_costs(dataset) # the information of costs flop, param, latency = info['flops'], info['params'], info['latency'] if FLOP_max is not None and flop > FLOP_max : continue if Param_max is not None and param > Param_max: continue xinfo = arch_info.get_metrics(dataset, metric_on_set) # the information of loss and accuracy loss, accuracy = xinfo['loss'], xinfo['accuracy'] if best_index == -1: best_index, highest_accuracy = arch_index, accuracy elif highest_accuracy < accuracy: best_index, highest_accuracy = arch_index, accuracy if self.verbose: print(' the best architecture : [{:}] {:} with accuracy={:.3f}%'.format(best_index, self.arch(best_index), highest_accuracy)) return best_index, highest_accuracy def get_net_param(self, index, dataset, seed: Optional[int], hp: Text = '12'): """ This function is used to obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed` Args [seed]: -- None : return a dict containing the trained weights of all trials, where each key is a seed and its corresponding value is the weights. -- a interger : return the weights of a specific trial, whose seed is this interger. Args [hp]: -- 01 : train the model by 01 epochs -- 12 : train the model by 12 epochs -- 90 : train the model by 90 epochs -- 200 : train the model by 200 epochs """ if self.verbose: print('Call the get_net_param function with index={:}, dataset={:}, seed={:}, hp={:}'.format(index, dataset, seed, hp)) info = self.query_meta_info_by_index(index, hp) return info.get_net_param(dataset, seed) def get_net_config(self, index: int, dataset: Text): """ This function is used to obtain the configuration for the `index`-th architecture on `dataset`. Args [dataset] (4 possible options): -- cifar10-valid : training the model on the CIFAR-10 training set. -- cifar10 : training the model on the CIFAR-10 training + validation set. -- cifar100 : training the model on the CIFAR-100 training set. -- ImageNet16-120 : training the model on the ImageNet16-120 training set. This function will return a dict. ========= Some examlpes for using this function: config = api.get_net_config(128, 'cifar10') """ if self.verbose: print('Call the get_net_config function with index={:}, dataset={:}.'.format(index, dataset)) if index in self.arch2infos_dict: info = self.arch2infos_dict[index] else: raise ValueError('The arch_index={:} is not in arch2infos_dict.'.format(arch_index)) info = next(iter(info.values())) results = info.query(dataset, None) results = next(iter(results.values())) return results.get_config(None) def get_cost_info(self, index: int, dataset: Text, hp: Text = '12') -> Dict[Text, float]: """To obtain the cost metric for the `index`-th architecture on a dataset.""" if self.verbose: print('Call the get_cost_info function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp)) info = self.query_meta_info_by_index(index, hp) return info.get_compute_costs(dataset) def get_latency(self, index: int, dataset: Text, hp: Text = '12') -> float: """ To obtain the latency of the network (by default it will return the latency with the batch size of 256). :param index: the index of the target architecture :param dataset: the dataset name (cifar10-valid, cifar10, cifar100, ImageNet16-120) :return: return a float value in seconds """ if self.verbose: print('Call the get_latency function with index={:}, dataset={:}, and hp={:}.'.format(index, dataset, hp)) cost_dict = self.get_cost_info(index, dataset, hp) return cost_dict['latency'] @abc.abstractmethod def show(self, index=-1): """This function will print the information of a specific (or all) architecture(s).""" def _show(self, index=-1, print_information=None) -> None: """ This function will print the information of a specific (or all) architecture(s). :param index: If the index < 0: it will loop for all architectures and print their information one by one. else: it will print the information of the 'index'-th architecture. :return: nothing """ if index < 0: # show all architectures print(self) for i, idx in enumerate(self.evaluated_indexes): print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10) print('arch : {:}'.format(self.meta_archs[idx])) for key, result in self.arch2infos_dict[index].items(): strings = print_information(result) print('>' * 40 + ' {:03d} epochs '.format(result.get_total_epoch()) + '>' * 40) print('\n'.join(strings)) print('<' * 40 + '------------' + '<' * 40) else: if 0 <= index < len(self.meta_archs): if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index)) else: arch_info = self.arch2infos_dict[index] for key, result in self.arch2infos_dict[index].items(): strings = print_information(result) print('>' * 40 + ' {:03d} epochs '.format(result.get_total_epoch()) + '>' * 40) print('\n'.join(strings)) print('<' * 40 + '------------' + '<' * 40) else: print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs))) def statistics(self, dataset: Text, hp: Union[Text, int]) -> Dict[int, int]: """This function will count the number of total trials.""" if self.verbose: print('Call the statistics function with dataset={:} and hp={:}.'.format(dataset, hp)) valid_datasets = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] if dataset not in valid_datasets: raise ValueError('{:} not in {:}'.format(dataset, valid_datasets)) nums, hp = defaultdict(lambda: 0), str(hp) for index in range(len(self)): archInfo = self.arch2infos_dict[index][hp] dataset_seed = archInfo.dataset_seed if dataset not in dataset_seed: nums[0] += 1 else: nums[len(dataset_seed[dataset])] += 1 return dict(nums) class ArchResults(object): def __init__(self, arch_index, arch_str): self.arch_index = int(arch_index) self.arch_str = copy.deepcopy(arch_str) self.all_results = dict() self.dataset_seed = dict() self.clear_net_done = False def get_compute_costs(self, dataset): x_seeds = self.dataset_seed[dataset] results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] flops = [result.flop for result in results] params = [result.params for result in results] latencies = [result.get_latency() for result in results] latencies = [x for x in latencies if x > 0] mean_latency = np.mean(latencies) if len(latencies) > 0 else None time_infos = defaultdict(list) for result in results: time_info = result.get_times() for key, value in time_info.items(): time_infos[key].append( value ) info = {'flops' : np.mean(flops), 'params' : np.mean(params), 'latency': mean_latency} for key, value in time_infos.items(): if len(value) > 0 and value[0] is not None: info[key] = np.mean(value) else: info[key] = None return info def get_metrics(self, dataset, setname, iepoch=None, is_random=False): """ This `get_metrics` function is used to obtain obtain the loss, accuracy, etc information on a specific dataset. If not specify, each set refer to the proposed split in NAS-Bench-201 paper. If some args return None or raise error, then it is not avaliable. ======================================== Args [dataset] (4 possible options): -- cifar10-valid : training the model on the CIFAR-10 training set. -- cifar10 : training the model on the CIFAR-10 training + validation set. -- cifar100 : training the model on the CIFAR-100 training set. -- ImageNet16-120 : training the model on the ImageNet16-120 training set. Args [setname] (each dataset has different setnames): -- When dataset = cifar10-valid, you can use 'train', 'x-valid', 'ori-test' ------ 'train' : the metric on the training set. ------ 'x-valid' : the metric on the validation set. ------ 'ori-test' : the metric on the test set. -- When dataset = cifar10, you can use 'train', 'ori-test'. ------ 'train' : the metric on the training + validation set. ------ 'ori-test' : the metric on the test set. -- When dataset = cifar100 or ImageNet16-120, you can use 'train', 'ori-test', 'x-valid', 'x-test' ------ 'train' : the metric on the training set. ------ 'x-valid' : the metric on the validation set. ------ 'x-test' : the metric on the test set. ------ 'ori-test' : the metric on the validation + test set. Args [iepoch] (None or an integer in [0, the-number-of-total-training-epochs) ------ None : return the metric after the last training epoch. ------ an integer i : return the metric after the i-th training epoch. Args [is_random]: ------ True : return the metric of a randomly selected trial. ------ False : return the averaged metric of all avaliable trials. ------ an integer indicating the 'seed' value : return the metric of a specific trial (whose random seed is 'is_random'). """ x_seeds = self.dataset_seed[dataset] results = [self.all_results[ (dataset, seed) ] for seed in x_seeds] infos = defaultdict(list) for result in results: if setname == 'train': info = result.get_train(iepoch) else: info = result.get_eval(setname, iepoch) for key, value in info.items(): infos[key].append( value ) return_info = dict() if isinstance(is_random, bool) and is_random: # randomly select one index = random.randint(0, len(results)-1) for key, value in infos.items(): return_info[key] = value[index] elif isinstance(is_random, bool) and not is_random: # average for key, value in infos.items(): if len(value) > 0 and value[0] is not None: return_info[key] = np.mean(value) else: return_info[key] = None elif isinstance(is_random, int): # specify the seed if is_random not in x_seeds: raise ValueError('can not find random seed ({:}) from {:}'.format(is_random, x_seeds)) index = x_seeds.index(is_random) for key, value in infos.items(): return_info[key] = value[index] else: raise ValueError('invalid value for is_random: {:}'.format(is_random)) return return_info def show(self, is_print=False): return print_information(self, None, is_print) def get_dataset_names(self): return list(self.dataset_seed.keys()) def get_dataset_seeds(self, dataset): return copy.deepcopy( self.dataset_seed[dataset] ) def get_net_param(self, dataset: Text, seed: Union[None, int] =None): """ This function will return the trained network's weights on the 'dataset'. :arg dataset: one of 'cifar10-valid', 'cifar10', 'cifar100', and 'ImageNet16-120'. seed: an integer indicates the seed value or None that indicates returing all trials. """ if seed is None: x_seeds = self.dataset_seed[dataset] return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds} else: xkey = (dataset, seed) if xkey in self.all_results: return self.all_results[xkey].get_net_param() else: raise ValueError('key={:} not in {:}'.format(xkey, list(self.all_results.keys()))) def reset_latency(self, dataset: Text, seed: Union[None, Text], latency: float) -> None: """This function is used to reset the latency in all corresponding ResultsCount(s).""" if seed is None: for seed in self.dataset_seed[dataset]: self.all_results[(dataset, seed)].update_latency([latency]) else: self.all_results[(dataset, seed)].update_latency([latency]) def reset_pseudo_train_times(self, dataset: Text, seed: Union[None, Text], estimated_per_epoch_time: float) -> None: """This function is used to reset the train-times in all corresponding ResultsCount(s).""" if seed is None: for seed in self.dataset_seed[dataset]: self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time) else: self.all_results[(dataset, seed)].reset_pseudo_train_times(estimated_per_epoch_time) def reset_pseudo_eval_times(self, dataset: Text, seed: Union[None, Text], eval_name: Text, estimated_per_epoch_time: float) -> None: """This function is used to reset the eval-times in all corresponding ResultsCount(s).""" if seed is None: for seed in self.dataset_seed[dataset]: self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time) else: self.all_results[(dataset, seed)].reset_pseudo_eval_times(eval_name, estimated_per_epoch_time) def get_latency(self, dataset: Text) -> float: """Get the latency of a model on the target dataset. [Timestamp: 2020.03.09]""" latencies = [] for seed in self.dataset_seed[dataset]: latency = self.all_results[(dataset, seed)].get_latency() if not isinstance(latency, float) or latency <= 0: raise ValueError('invalid latency of {:} with seed={:} : {:}'.format(dataset, seed, latency)) latencies.append(latency) return sum(latencies) / len(latencies) def get_total_epoch(self, dataset=None): """Return the total number of training epochs.""" if dataset is None: epochss = [] for xdata, x_seeds in self.dataset_seed.items(): epochss += [self.all_results[(xdata, seed)].get_total_epoch() for seed in x_seeds] elif isinstance(dataset, str): x_seeds = self.dataset_seed[dataset] epochss = [self.all_results[(dataset, seed)].get_total_epoch() for seed in x_seeds] else: raise ValueError('invalid dataset={:}'.format(dataset)) if len(set(epochss)) > 1: raise ValueError('Each trial mush have the same number of training epochs : {:}'.format(epochss)) return epochss[-1] def query(self, dataset, seed=None): """Return the ResultsCount object (containing all information of a single trial) for 'dataset' and 'seed'""" if seed is None: #print(self.dataset_seed.keys()) #print(dataset) x_seeds = self.dataset_seed[dataset] return {seed: self.all_results[(dataset, seed)] for seed in x_seeds} else: return self.all_results[(dataset, seed)] def arch_idx_str(self): return '{:06d}'.format(self.arch_index) def update(self, dataset_name, seed, result): if dataset_name not in self.dataset_seed: self.dataset_seed[dataset_name] = [] assert seed not in self.dataset_seed[dataset_name], '{:}-th arch alreadly has this seed ({:}) on {:}'.format(self.arch_index, seed, dataset_name) self.dataset_seed[ dataset_name ].append( seed ) self.dataset_seed[ dataset_name ] = sorted( self.dataset_seed[ dataset_name ] ) assert (dataset_name, seed) not in self.all_results self.all_results[ (dataset_name, seed) ] = result self.clear_net_done = False def state_dict(self): state_dict = dict() for key, value in self.__dict__.items(): if key == 'all_results': # contain the class of ResultsCount xvalue = dict() assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value)) for _k, _v in value.items(): assert isinstance(_v, ResultsCount), 'invalid type of value for {:}/{:} : {:}'.format(key, _k, type(_v)) xvalue[_k] = _v.state_dict() else: xvalue = value state_dict[key] = xvalue return state_dict def load_state_dict(self, state_dict): new_state_dict = dict() for key, value in state_dict.items(): if key == 'all_results': # to convert to the class of ResultsCount xvalue = dict() assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value)) for _k, _v in value.items(): xvalue[_k] = ResultsCount.create_from_state_dict(_v) else: xvalue = value new_state_dict[key] = xvalue self.__dict__.update(new_state_dict) @staticmethod def create_from_state_dict(state_dict_or_file): x = ArchResults(-1, -1) if isinstance(state_dict_or_file, str): # a file path state_dict = torch.load(state_dict_or_file, map_location='cpu') elif isinstance(state_dict_or_file, dict): state_dict = state_dict_or_file else: raise ValueError('invalid type of state_dict_or_file : {:}'.format(type(state_dict_or_file))) x.load_state_dict(state_dict) return x # This function is used to clear the weights saved in each 'result' # This can help reduce the memory footprint. def clear_params(self): for key, result in self.all_results.items(): del result.net_state_dict result.net_state_dict = None self.clear_net_done = True def debug_test(self): """This function is used for me to debug and test, which will call most methods.""" all_dataset = ['cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120'] for dataset in all_dataset: print('---->>>> {:}'.format(dataset)) print('The latency on {:} is {:} s'.format(dataset, self.get_latency(dataset))) for seed in self.dataset_seed[dataset]: result = self.all_results[(dataset, seed)] print(' ==>> result = {:}'.format(result)) print(' ==>> cost = {:}'.format(result.get_times())) def __repr__(self): return ('{name}(arch-index={index}, arch={arch}, {num} runs, clear={clear})'.format(name=self.__class__.__name__, index=self.arch_index, arch=self.arch_str, num=len(self.all_results), clear=self.clear_net_done)) """ This class (ResultsCount) is used to save the information of one trial for a single architecture. I did not write much comment for this class, because it is the lowest-level class in NAS-Bench-201 API, which will be rarely called. If you have any question regarding this class, please open an issue or email me. """ class ResultsCount(object): def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency): self.name = name self.net_state_dict = state_dict self.train_acc1es = copy.deepcopy(train_accs) self.train_acc5es = None self.train_losses = copy.deepcopy(train_losses) self.train_times = None self.arch_config = copy.deepcopy(arch_config) self.params = params self.flop = flop self.seed = seed self.epochs = epochs self.latency = latency # evaluation results self.reset_eval() def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times) -> None: self.train_acc1es = train_acc1es self.train_acc5es = train_acc5es self.train_losses = train_losses self.train_times = train_times def reset_pseudo_train_times(self, estimated_per_epoch_time: float) -> None: """Assign the training times.""" train_times = OrderedDict() for i in range(self.epochs): train_times[i] = estimated_per_epoch_time self.train_times = train_times def reset_pseudo_eval_times(self, eval_name: Text, estimated_per_epoch_time: float) -> None: """Assign the evaluation times.""" if eval_name not in self.eval_names: raise ValueError('invalid eval name : {:}'.format(eval_name)) for i in range(self.epochs): self.eval_times['{:}@{:}'.format(eval_name,i)] = estimated_per_epoch_time def reset_eval(self): self.eval_names = [] self.eval_acc1es = {} self.eval_times = {} self.eval_losses = {} def update_latency(self, latency): self.latency = copy.deepcopy( latency ) def get_latency(self) -> float: """Return the latency value in seconds. -1 represents not avaliable ; otherwise it should be a float value""" if self.latency is None: return -1.0 else: return sum(self.latency) / len(self.latency) def update_eval(self, accs, losses, times): # new version data_names = set([x.split('@')[0] for x in accs.keys()]) for data_name in data_names: assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name) self.eval_names.append( data_name ) for iepoch in range(self.epochs): xkey = '{:}@{:}'.format(data_name, iepoch) self.eval_acc1es[ xkey ] = accs[ xkey ] self.eval_losses[ xkey ] = losses[ xkey ] self.eval_times [ xkey ] = times[ xkey ] def update_OLD_eval(self, name, accs, losses): # old version assert name not in self.eval_names, '{:} has already added'.format(name) self.eval_names.append( name ) for iepoch in range(self.epochs): if iepoch in accs: self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch] self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch] def __repr__(self): num_eval = len(self.eval_names) set_name = '[' + ', '.join(self.eval_names) + ']' return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name)) def get_total_epoch(self): return copy.deepcopy(self.epochs) def get_times(self): """Obtain the information regarding both training and evaluation time.""" if self.train_times is not None and isinstance(self.train_times, dict): train_times = list( self.train_times.values() ) time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)} else: time_info = {'T-train@epoch': None, 'T-train@total': None } for name in self.eval_names: try: xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)] time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes) time_info['T-{:}@total'.format(name)] = np.sum(xtimes) except: time_info['T-{:}@epoch'.format(name)] = None time_info['T-{:}@total'.format(name)] = None return time_info def get_eval_set(self): return self.eval_names # get the training information def get_train(self, iepoch=None): if iepoch is None: iepoch = self.epochs-1 assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) if self.train_times is not None: xtime = self.train_times[iepoch] atime = sum([self.train_times[i] for i in range(iepoch+1)]) else: xtime, atime = None, None return {'iepoch' : iepoch, 'loss' : self.train_losses[iepoch], 'accuracy': self.train_acc1es[iepoch], 'cur_time': xtime, 'all_time': atime} def get_eval(self, name, iepoch=None): """Get the evaluation information ; there could be multiple evaluation sets (identified by the 'name' argument).""" if iepoch is None: iepoch = self.epochs-1 assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs) def _internal_query(xname): if isinstance(self.eval_times,dict) and len(self.eval_times) > 0: xtime = self.eval_times['{:}@{:}'.format(xname, iepoch)] atime = sum([self.eval_times['{:}@{:}'.format(xname, i)] for i in range(iepoch+1)]) else: xtime, atime = None, None return {'iepoch' : iepoch, 'loss' : self.eval_losses['{:}@{:}'.format(xname, iepoch)], 'accuracy': self.eval_acc1es['{:}@{:}'.format(xname, iepoch)], 'cur_time': xtime, 'all_time': atime} if name == 'valid': return _internal_query('x-valid') else: return _internal_query(name) def get_net_param(self, clone=False): if clone: return copy.deepcopy(self.net_state_dict) else: return self.net_state_dict def get_config(self, str2structure): """This function is used to obtain the config dict for this architecture.""" if str2structure is None: # In this case, this is to handle the size search space. if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny': return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'], 'genotype': self.arch_config['genotype'], 'num_classes': self.arch_config['class_num']} # In this case, this is NAS-Bench-201 else: return {'name': 'infer.tiny', 'C': self.arch_config['channel'], 'N' : self.arch_config['num_cells'], 'arch_str': self.arch_config['arch_str'], 'num_classes': self.arch_config['class_num']} else: # In this case, this is to handle the size search space. if 'name' in self.arch_config and self.arch_config['name'] == 'infer.shape.tiny': return {'name': 'infer.shape.tiny', 'channels': self.arch_config['channels'], 'genotype': str2structure(self.arch_config['genotype']), 'num_classes': self.arch_config['class_num']} # In this case, this is NAS-Bench-201 else: return {'name': 'infer.tiny', 'C': self.arch_config['channel'], 'N' : self.arch_config['num_cells'], 'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']} def state_dict(self): _state_dict = {key: value for key, value in self.__dict__.items()} return _state_dict def load_state_dict(self, state_dict): self.__dict__.update(state_dict) @staticmethod def create_from_state_dict(state_dict): x = ResultsCount(None, None, None, None, None, None, None, None, None, None) x.load_state_dict(state_dict) return x