import os, sys, time, random, argparse from .share_args import add_shared_args def obtain_pruning_args(): parser = argparse.ArgumentParser(description='Train a classification model on typical image classification datasets.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--resume' , type=str, help='Resume path.') parser.add_argument('--init_model' , type=str, help='The initialization model path.') parser.add_argument('--model_config', type=str, help='The path to the model configuration') parser.add_argument('--optim_config', type=str, help='The path to the optimizer configuration') parser.add_argument('--procedure' , type=str, help='The procedure basic prefix.') parser.add_argument('--keep_ratio' , type=float, help='The left channel ratio compared to the original network.') parser.add_argument('--model_version', type=str, help='The network version.') parser.add_argument('--KD_alpha' , type=float, help='The alpha parameter in knowledge distillation.') parser.add_argument('--KD_temperature', type=float, help='The temperature parameter in knowledge distillation.') parser.add_argument('--Regular_W_feat', type=float, help='The .') parser.add_argument('--Regular_W_conv', type=float, help='The .') add_shared_args( parser ) # Optimization options parser.add_argument('--batch_size', type=int, default=2, help='Batch size for training.') args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, 'save-path argument can not be None' assert args.keep_ratio > 0 and args.keep_ratio <= 1, 'invalid keep ratio : {:}'.format(args.keep_ratio) return args