88 lines
4.7 KiB
Python
88 lines
4.7 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
import os, sys, time, torch
|
|
from log_utils import AverageMeter, time_string
|
|
from utils import obtain_accuracy
|
|
from models import change_key
|
|
|
|
|
|
def get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant):
|
|
expected_flop = torch.mean( expected_flop )
|
|
|
|
if flop_cur < flop_need - flop_tolerant: # Too Small FLOP
|
|
loss = - torch.log( expected_flop )
|
|
#elif flop_cur > flop_need + flop_tolerant: # Too Large FLOP
|
|
elif flop_cur > flop_need: # Too Large FLOP
|
|
loss = torch.log( expected_flop )
|
|
else: # Required FLOP
|
|
loss = None
|
|
if loss is None: return 0, 0
|
|
else : return loss, loss.item()
|
|
|
|
|
|
def search_train_v2(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, extra_info, print_freq, logger):
|
|
data_time, batch_time = AverageMeter(), AverageMeter()
|
|
base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter()
|
|
arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter()
|
|
epoch_str, flop_need, flop_weight, flop_tolerant = extra_info['epoch-str'], extra_info['FLOP-exp'], extra_info['FLOP-weight'], extra_info['FLOP-tolerant']
|
|
|
|
network.train()
|
|
logger.log('[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}'.format(epoch_str, flop_need, flop_weight))
|
|
end = time.time()
|
|
network.apply( change_key('search_mode', 'search') )
|
|
for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader):
|
|
scheduler.update(None, 1.0 * step / len(search_loader))
|
|
# calculate prediction and loss
|
|
base_targets = base_targets.cuda(non_blocking=True)
|
|
arch_targets = arch_targets.cuda(non_blocking=True)
|
|
# measure data loading time
|
|
data_time.update(time.time() - end)
|
|
|
|
# update the weights
|
|
base_optimizer.zero_grad()
|
|
logits, expected_flop = network(base_inputs)
|
|
base_loss = criterion(logits, base_targets)
|
|
base_loss.backward()
|
|
base_optimizer.step()
|
|
# record
|
|
prec1, prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
|
|
base_losses.update(base_loss.item(), base_inputs.size(0))
|
|
top1.update (prec1.item(), base_inputs.size(0))
|
|
top5.update (prec5.item(), base_inputs.size(0))
|
|
|
|
# update the architecture
|
|
arch_optimizer.zero_grad()
|
|
logits, expected_flop = network(arch_inputs)
|
|
flop_cur = network.module.get_flop('genotype', None, None)
|
|
flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant)
|
|
acls_loss = criterion(logits, arch_targets)
|
|
arch_loss = acls_loss + flop_loss * flop_weight
|
|
arch_loss.backward()
|
|
arch_optimizer.step()
|
|
|
|
# record
|
|
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
|
|
arch_flop_losses.update(flop_loss_scale, arch_inputs.size(0))
|
|
arch_cls_losses.update (acls_loss.item(), arch_inputs.size(0))
|
|
|
|
# measure elapsed time
|
|
batch_time.update(time.time() - end)
|
|
end = time.time()
|
|
if step % print_freq == 0 or (step+1) == len(search_loader):
|
|
Sstr = '**TRAIN** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(search_loader))
|
|
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
|
|
Lstr = 'Base-Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=base_losses, top1=top1, top5=top5)
|
|
Vstr = 'Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})'.format(aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses)
|
|
logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr)
|
|
#num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0
|
|
#logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6))
|
|
#Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size()))
|
|
#logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr)
|
|
#print(network.module.get_arch_info())
|
|
#print(network.module.width_attentions[0])
|
|
#print(network.module.width_attentions[1])
|
|
|
|
logger.log(' **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, baseloss=base_losses.avg, archloss=arch_losses.avg))
|
|
return base_losses.avg, arch_losses.avg, top1.avg, top5.avg
|