319 lines
11 KiB
Python
319 lines
11 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.03 #
|
|
#####################################################
|
|
# Reformulate the codes in https://github.com/CalculatedContent/WeightWatcher
|
|
#####################################################
|
|
import numpy as np
|
|
from typing import List
|
|
import torch.nn as nn
|
|
from collections import OrderedDict
|
|
from sklearn.decomposition import TruncatedSVD
|
|
|
|
|
|
def available_module_types():
|
|
return (nn.Conv2d, nn.Linear)
|
|
|
|
|
|
def get_conv2D_Wmats(tensor: np.ndarray) -> List[np.ndarray]:
|
|
"""
|
|
Extract W slices from a 4 index conv2D tensor of shape: (N,M,i,j) or (M,N,i,j).
|
|
Return ij (N x M) matrices
|
|
"""
|
|
mats = []
|
|
N, M, imax, jmax = tensor.shape
|
|
assert N + M >= imax + jmax, 'invalid tensor shape detected: {}x{} (NxM), {}x{} (i,j)'.format(N, M, imax, jmax)
|
|
for i in range(imax):
|
|
for j in range(jmax):
|
|
w = tensor[:, :, i, j]
|
|
if N < M: w = w.T
|
|
mats.append(w)
|
|
return mats
|
|
|
|
|
|
def glorot_norm_check(W, N, M, rf_size, lower=0.5, upper=1.5):
|
|
"""Check if this layer needs Glorot Normalization Fix"""
|
|
|
|
kappa = np.sqrt(2 / ((N + M) * rf_size))
|
|
norm = np.linalg.norm(W)
|
|
|
|
check1 = norm / np.sqrt(N * M)
|
|
check2 = norm / (kappa * np.sqrt(N * M))
|
|
|
|
if (rf_size > 1) and (check2 > lower) and (check2 < upper):
|
|
return check2, True
|
|
elif (check1 > lower) & (check1 < upper):
|
|
return check1, True
|
|
else:
|
|
if rf_size > 1: return check2, False
|
|
else: return check1, False
|
|
|
|
def glorot_norm_fix(w, n, m, rf_size):
|
|
"""Apply Glorot Normalization Fix."""
|
|
kappa = np.sqrt(2 / ((n + m) * rf_size))
|
|
w = w / kappa
|
|
return w
|
|
|
|
|
|
def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix):
|
|
results = OrderedDict()
|
|
count = len(weights)
|
|
if count == 0: return results
|
|
|
|
for i, weight in enumerate(weights):
|
|
M, N = np.min(weight.shape), np.max(weight.shape)
|
|
Q = N / M
|
|
results[i] = cur_res = OrderedDict(N=N, M=M, Q=Q)
|
|
check, checkTF = glorot_norm_check(weight, N, M, count)
|
|
cur_res['check'] = check
|
|
cur_res['checkTF'] = checkTF
|
|
# assume receptive field size is count
|
|
if glorot_fix:
|
|
weight = glorot_norm_fix(weight, N, M, count)
|
|
else:
|
|
# probably never needed since we always fix for glorot
|
|
weight = weight * np.sqrt(count / 2.0)
|
|
|
|
if spectralnorms: # spectralnorm is the max eigenvalues
|
|
svd = TruncatedSVD(n_components=1, n_iter=7, random_state=10)
|
|
svd.fit(weight)
|
|
sv = svd.singular_values_
|
|
sv_max = np.max(sv)
|
|
if normalize:
|
|
evals = sv * sv / N
|
|
else:
|
|
evals = sv * sv
|
|
lambda0 = evals[0]
|
|
cur_res["spectralnorm"] = lambda0
|
|
cur_res["logspectralnorm"] = np.log10(lambda0)
|
|
else:
|
|
lambda0 = None
|
|
|
|
if M < min_size:
|
|
summary = "Weight matrix {}/{} ({},{}): Skipping: too small (<{})".format(i + 1, count, M, N, min_size)
|
|
cur_res["summary"] = summary
|
|
continue
|
|
elif max_size > 0 and M > max_size:
|
|
summary = "Weight matrix {}/{} ({},{}): Skipping: too big (testing) (>{})".format(i + 1, count, M, N, max_size)
|
|
cur_res["summary"] = summary
|
|
continue
|
|
else:
|
|
summary = []
|
|
if alphas:
|
|
import powerlaw
|
|
svd = TruncatedSVD(n_components=M - 1, n_iter=7, random_state=10)
|
|
svd.fit(weight.astype(float))
|
|
sv = svd.singular_values_
|
|
if normalize: evals = sv * sv / N
|
|
else: evals = sv * sv
|
|
|
|
lambda_max = np.max(evals)
|
|
fit = powerlaw.Fit(evals, xmax=lambda_max, verbose=False)
|
|
alpha = fit.alpha
|
|
cur_res["alpha"] = alpha
|
|
D = fit.D
|
|
cur_res["D"] = D
|
|
cur_res["lambda_min"] = np.min(evals)
|
|
cur_res["lambda_max"] = lambda_max
|
|
alpha_weighted = alpha * np.log10(lambda_max)
|
|
cur_res["alpha_weighted"] = alpha_weighted
|
|
tolerance = lambda_max * M * np.finfo(np.max(sv)).eps
|
|
cur_res["rank_loss"] = np.count_nonzero(sv > tolerance, axis=-1)
|
|
|
|
logpnorm = np.log10(np.sum([ev ** alpha for ev in evals]))
|
|
cur_res["logpnorm"] = logpnorm
|
|
|
|
summary.append(
|
|
"Weight matrix {}/{} ({},{}): Alpha: {}, Alpha Weighted: {}, D: {}, pNorm {}".format(i + 1, count, M, N, alpha,
|
|
alpha_weighted, D,
|
|
logpnorm))
|
|
|
|
if lognorms:
|
|
norm = np.linalg.norm(weight) # Frobenius Norm
|
|
cur_res["norm"] = norm
|
|
lognorm = np.log10(norm)
|
|
cur_res["lognorm"] = lognorm
|
|
|
|
X = np.dot(weight.T, weight)
|
|
if normalize: X = X / N
|
|
normX = np.linalg.norm(X) # Frobenius Norm
|
|
cur_res["normX"] = normX
|
|
lognormX = np.log10(normX)
|
|
cur_res["lognormX"] = lognormX
|
|
|
|
summary.append(
|
|
"Weight matrix {}/{} ({},{}): LogNorm: {} ; LogNormX: {}".format(i + 1, count, M, N, lognorm, lognormX))
|
|
|
|
if softranks:
|
|
softrank = norm ** 2 / sv_max ** 2
|
|
softranklog = np.log10(softrank)
|
|
softranklogratio = lognorm / np.log10(sv_max)
|
|
cur_res["softrank"] = softrank
|
|
cur_res["softranklog"] = softranklog
|
|
cur_res["softranklogratio"] = softranklogratio
|
|
summary += "{}. Softrank: {}. Softrank log: {}. Softrank log ratio: {}".format(summary, softrank, softranklog,
|
|
softranklogratio)
|
|
cur_res["summary"] = "\n".join(summary)
|
|
return results
|
|
|
|
|
|
def compute_details(results):
|
|
"""
|
|
Return a pandas data frame.
|
|
"""
|
|
final_summary = OrderedDict()
|
|
|
|
metrics = {
|
|
# key in "results" : pretty print name
|
|
"check": "Check",
|
|
"checkTF": "CheckTF",
|
|
"norm": "Norm",
|
|
"lognorm": "LogNorm",
|
|
"normX": "Norm X",
|
|
"lognormX": "LogNorm X",
|
|
"alpha": "Alpha",
|
|
"alpha_weighted": "Alpha Weighted",
|
|
"spectralnorm": "Spectral Norm",
|
|
"logspectralnorm": "Log Spectral Norm",
|
|
"softrank": "Softrank",
|
|
"softranklog": "Softrank Log",
|
|
"softranklogratio": "Softrank Log Ratio",
|
|
"sigma_mp": "Marchenko-Pastur (MP) fit sigma",
|
|
"numofSpikes": "Number of spikes per MP fit",
|
|
"ratio_numofSpikes": "aka, percent_mass, Number of spikes / total number of evals",
|
|
"softrank_mp": "Softrank for MP fit",
|
|
"logpnorm": "alpha pNorm"
|
|
}
|
|
|
|
metrics_stats = []
|
|
for metric in metrics:
|
|
metrics_stats.append("{}_min".format(metric))
|
|
metrics_stats.append("{}_max".format(metric))
|
|
metrics_stats.append("{}_avg".format(metric))
|
|
|
|
metrics_stats.append("{}_compound_min".format(metric))
|
|
metrics_stats.append("{}_compound_max".format(metric))
|
|
metrics_stats.append("{}_compound_avg".format(metric))
|
|
|
|
columns = ["layer_id", "layer_type", "N", "M", "layer_count", "slice",
|
|
"slice_count", "level", "comment"] + [*metrics] + metrics_stats
|
|
|
|
metrics_values = {}
|
|
metrics_values_compound = {}
|
|
|
|
for metric in metrics:
|
|
metrics_values[metric] = []
|
|
metrics_values_compound[metric] = []
|
|
|
|
layer_count = 0
|
|
for layer_id, result in results.items():
|
|
layer_count += 1
|
|
|
|
layer_type = np.NAN
|
|
if "layer_type" in result:
|
|
layer_type = str(result["layer_type"]).replace("LAYER_TYPE.", "")
|
|
|
|
compounds = {} # temp var
|
|
for metric in metrics:
|
|
compounds[metric] = []
|
|
|
|
slice_count, Ntotal, Mtotal = 0, 0, 0
|
|
for slice_id, summary in result.items():
|
|
if not str(slice_id).isdigit():
|
|
continue
|
|
slice_count += 1
|
|
|
|
N = np.NAN
|
|
if "N" in summary:
|
|
N = summary["N"]
|
|
Ntotal += N
|
|
|
|
M = np.NAN
|
|
if "M" in summary:
|
|
M = summary["M"]
|
|
Mtotal += M
|
|
|
|
data = {"layer_id": layer_id, "layer_type": layer_type, "N": N, "M": M, "slice": slice_id, "level": "SLICE",
|
|
"comment": "Slice level"}
|
|
for metric in metrics:
|
|
if metric in summary:
|
|
value = summary[metric]
|
|
if value is not None:
|
|
metrics_values[metric].append(value)
|
|
compounds[metric].append(value)
|
|
data[metric] = value
|
|
|
|
data = {"layer_id": layer_id, "layer_type": layer_type, "N": Ntotal, "M": Mtotal, "slice_count": slice_count,
|
|
"level": "LAYER", "comment": "Layer level"}
|
|
# Compute the compound value over the slices
|
|
for metric, value in compounds.items():
|
|
count = len(value)
|
|
if count == 0:
|
|
continue
|
|
|
|
compound = np.mean(value)
|
|
metrics_values_compound[metric].append(compound)
|
|
data[metric] = compound
|
|
|
|
data = {"layer_count": layer_count, "level": "NETWORK", "comment": "Network Level"}
|
|
for metric, metric_name in metrics.items():
|
|
if metric not in metrics_values or len(metrics_values[metric]) == 0:
|
|
continue
|
|
|
|
values = metrics_values[metric]
|
|
minimum = min(values)
|
|
maximum = max(values)
|
|
avg = np.mean(values)
|
|
final_summary[metric] = avg
|
|
# print("{}: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg))
|
|
data["{}_min".format(metric)] = minimum
|
|
data["{}_max".format(metric)] = maximum
|
|
data["{}_avg".format(metric)] = avg
|
|
|
|
values = metrics_values_compound[metric]
|
|
minimum = min(values)
|
|
maximum = max(values)
|
|
avg = np.mean(values)
|
|
final_summary["{}_compound".format(metric)] = avg
|
|
# print("{} compound: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg))
|
|
data["{}_compound_min".format(metric)] = minimum
|
|
data["{}_compound_max".format(metric)] = maximum
|
|
data["{}_compound_avg".format(metric)] = avg
|
|
|
|
return final_summary
|
|
|
|
|
|
def analyze(model: nn.Module, min_size=50, max_size=0,
|
|
alphas: bool = False, lognorms: bool = True, spectralnorms: bool = False,
|
|
softranks: bool = False, normalize: bool = False, glorot_fix: bool = False):
|
|
"""
|
|
Analyze the weight matrices of a model.
|
|
:param model: A PyTorch model
|
|
:param min_size: The minimum weight matrix size to analyze.
|
|
:param max_size: The maximum weight matrix size to analyze (0 = no limit).
|
|
:param alphas: Compute the power laws (alpha) of the weight matrices.
|
|
Time consuming so disabled by default (use lognorm if you want speed)
|
|
:param lognorms: Compute the log norms of the weight matrices.
|
|
:param spectralnorms: Compute the spectral norm (max eigenvalue) of the weight matrices.
|
|
:param softranks: Compute the soft norm (i.e. StableRank) of the weight matrices.
|
|
:param normalize: Normalize or not.
|
|
:param glorot_fix:
|
|
:return: (a dict of all layers' results, a dict of the summarized info)
|
|
"""
|
|
names, modules = [], []
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, available_module_types()):
|
|
names.append(name)
|
|
modules.append(module)
|
|
# print('There are {:} layers to be analyzed in this model.'.format(len(modules)))
|
|
all_results = OrderedDict()
|
|
for index, module in enumerate(modules):
|
|
if isinstance(module, nn.Linear):
|
|
weights = [module.weight.cpu().detach().numpy()]
|
|
else:
|
|
weights = get_conv2D_Wmats(module.weight.cpu().detach().numpy())
|
|
results = analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix)
|
|
results['id'] = index
|
|
results['type'] = type(module)
|
|
all_results[index] = results
|
|
summary = compute_details(all_results)
|
|
return all_results, summary |