256 lines
12 KiB
Python
256 lines
12 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
##################################################
|
|
import os, sys, torch
|
|
import os.path as osp
|
|
import numpy as np
|
|
import torchvision.datasets as dset
|
|
import torchvision.transforms as transforms
|
|
from copy import deepcopy
|
|
from PIL import Image
|
|
|
|
from .DownsampledImageNet import ImageNet16
|
|
from .SearchDatasetWrap import SearchDataset
|
|
from config_utils import load_config
|
|
|
|
|
|
Dataset2Class = {'cifar10' : 10,
|
|
'cifar100': 100,
|
|
'fake':10,
|
|
'imagenet-1k-s':1000,
|
|
'imagenette2' : 10,
|
|
'imagenet-1k' : 1000,
|
|
'ImageNet16' : 1000,
|
|
'ImageNet16-150': 150,
|
|
'ImageNet16-120': 120,
|
|
'ImageNet16-200': 200}
|
|
|
|
|
|
class CUTOUT(object):
|
|
|
|
def __init__(self, length):
|
|
self.length = length
|
|
|
|
def __repr__(self):
|
|
return ('{name}(length={length})'.format(name=self.__class__.__name__, **self.__dict__))
|
|
|
|
def __call__(self, img):
|
|
h, w = img.size(1), img.size(2)
|
|
mask = np.ones((h, w), np.float32)
|
|
y = np.random.randint(h)
|
|
x = np.random.randint(w)
|
|
|
|
y1 = np.clip(y - self.length // 2, 0, h)
|
|
y2 = np.clip(y + self.length // 2, 0, h)
|
|
x1 = np.clip(x - self.length // 2, 0, w)
|
|
x2 = np.clip(x + self.length // 2, 0, w)
|
|
|
|
mask[y1: y2, x1: x2] = 0.
|
|
mask = torch.from_numpy(mask)
|
|
mask = mask.expand_as(img)
|
|
img *= mask
|
|
return img
|
|
|
|
|
|
imagenet_pca = {
|
|
'eigval': np.asarray([0.2175, 0.0188, 0.0045]),
|
|
'eigvec': np.asarray([
|
|
[-0.5675, 0.7192, 0.4009],
|
|
[-0.5808, -0.0045, -0.8140],
|
|
[-0.5836, -0.6948, 0.4203],
|
|
])
|
|
}
|
|
|
|
|
|
class Lighting(object):
|
|
def __init__(self, alphastd,
|
|
eigval=imagenet_pca['eigval'],
|
|
eigvec=imagenet_pca['eigvec']):
|
|
self.alphastd = alphastd
|
|
assert eigval.shape == (3,)
|
|
assert eigvec.shape == (3, 3)
|
|
self.eigval = eigval
|
|
self.eigvec = eigvec
|
|
|
|
def __call__(self, img):
|
|
if self.alphastd == 0.:
|
|
return img
|
|
rnd = np.random.randn(3) * self.alphastd
|
|
rnd = rnd.astype('float32')
|
|
v = rnd
|
|
old_dtype = np.asarray(img).dtype
|
|
v = v * self.eigval
|
|
v = v.reshape((3, 1))
|
|
inc = np.dot(self.eigvec, v).reshape((3,))
|
|
img = np.add(img, inc)
|
|
if old_dtype == np.uint8:
|
|
img = np.clip(img, 0, 255)
|
|
img = Image.fromarray(img.astype(old_dtype), 'RGB')
|
|
return img
|
|
|
|
def __repr__(self):
|
|
return self.__class__.__name__ + '()'
|
|
|
|
|
|
def get_datasets(name, root, cutout):
|
|
|
|
if name == 'cifar10':
|
|
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
|
|
std = [x / 255 for x in [63.0, 62.1, 66.7]]
|
|
elif name == 'cifar100':
|
|
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
|
|
std = [x / 255 for x in [68.2, 65.4, 70.4]]
|
|
elif name == 'fake':
|
|
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
|
|
std = [x / 255 for x in [68.2, 65.4, 70.4]]
|
|
elif name.startswith('imagenet-1k'):
|
|
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
|
|
elif name.startswith('imagenette'):
|
|
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
|
|
elif name.startswith('ImageNet16'):
|
|
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
|
|
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
|
|
else:
|
|
raise TypeError("Unknow dataset : {:}".format(name))
|
|
|
|
# Data Argumentation
|
|
if name == 'cifar10' or name == 'cifar100':
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 32, 32)
|
|
elif name == 'fake':
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 32, 32)
|
|
elif name.startswith('ImageNet16'):
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(16, padding=2), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 16, 16)
|
|
elif name == 'tiered':
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 32, 32)
|
|
elif name.startswith('imagenette'):
|
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
xlists = []
|
|
xlists.append( transforms.ToTensor() )
|
|
xlists.append( normalize )
|
|
#train_transform = transforms.Compose(xlists)
|
|
train_transform = transforms.Compose([normalize, normalize, transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
|
|
test_transform = transforms.Compose([normalize, normalize, transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
|
|
xshape = (1, 3, 224, 224)
|
|
elif name.startswith('imagenet-1k'):
|
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
if name == 'imagenet-1k':
|
|
xlists = [transforms.RandomResizedCrop(224)]
|
|
xlists.append(
|
|
transforms.ColorJitter(
|
|
brightness=0.4,
|
|
contrast=0.4,
|
|
saturation=0.4,
|
|
hue=0.2))
|
|
xlists.append( Lighting(0.1))
|
|
elif name == 'imagenet-1k-s':
|
|
xlists = [transforms.RandomResizedCrop(224, scale=(0.2, 1.0))]
|
|
else: raise ValueError('invalid name : {:}'.format(name))
|
|
xlists.append( transforms.RandomHorizontalFlip(p=0.5) )
|
|
xlists.append( transforms.ToTensor() )
|
|
xlists.append( normalize )
|
|
train_transform = transforms.Compose(xlists)
|
|
test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
|
|
xshape = (1, 3, 224, 224)
|
|
else:
|
|
raise TypeError("Unknow dataset : {:}".format(name))
|
|
|
|
if name == 'cifar10':
|
|
train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True)
|
|
test_data = dset.CIFAR10 (root, train=False, transform=test_transform , download=True)
|
|
assert len(train_data) == 50000 and len(test_data) == 10000
|
|
elif name == 'cifar100':
|
|
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
|
|
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
|
|
assert len(train_data) == 50000 and len(test_data) == 10000
|
|
elif name == 'fake':
|
|
train_data = dset.FakeData(size=50000, image_size=(3, 32, 32), transform=train_transform)
|
|
test_data = dset.FakeData(size=10000, image_size=(3, 32, 32), transform=test_transform)
|
|
elif name.startswith('imagenette2'):
|
|
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
|
|
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
|
|
elif name.startswith('imagenet-1k'):
|
|
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
|
|
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
|
|
assert len(train_data) == 1281167 and len(test_data) == 50000, 'invalid number of images : {:} & {:} vs {:} & {:}'.format(len(train_data), len(test_data), 1281167, 50000)
|
|
elif name == 'ImageNet16':
|
|
train_data = ImageNet16(root, True , train_transform)
|
|
test_data = ImageNet16(root, False, test_transform)
|
|
assert len(train_data) == 1281167 and len(test_data) == 50000
|
|
elif name == 'ImageNet16-120':
|
|
train_data = ImageNet16(root, True , train_transform, 120)
|
|
test_data = ImageNet16(root, False, test_transform , 120)
|
|
assert len(train_data) == 151700 and len(test_data) == 6000
|
|
elif name == 'ImageNet16-150':
|
|
train_data = ImageNet16(root, True , train_transform, 150)
|
|
test_data = ImageNet16(root, False, test_transform , 150)
|
|
assert len(train_data) == 190272 and len(test_data) == 7500
|
|
elif name == 'ImageNet16-200':
|
|
train_data = ImageNet16(root, True , train_transform, 200)
|
|
test_data = ImageNet16(root, False, test_transform , 200)
|
|
assert len(train_data) == 254775 and len(test_data) == 10000
|
|
else: raise TypeError("Unknow dataset : {:}".format(name))
|
|
|
|
class_num = Dataset2Class[name]
|
|
return train_data, test_data, xshape, class_num
|
|
|
|
|
|
def get_nas_search_loaders(train_data, valid_data, dataset, config_root, batch_size, workers):
|
|
if isinstance(batch_size, (list,tuple)):
|
|
batch, test_batch = batch_size
|
|
else:
|
|
batch, test_batch = batch_size, batch_size
|
|
if dataset == 'cifar10':
|
|
#split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
|
|
cifar_split = load_config('{:}/cifar-split.txt'.format(config_root), None, None)
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid # search over the proposed training and validation set
|
|
#logger.log('Load split file from {:}'.format(split_Fpath)) # they are two disjoint groups in the original CIFAR-10 training set
|
|
# To split data
|
|
xvalid_data = deepcopy(train_data)
|
|
if hasattr(xvalid_data, 'transforms'): # to avoid a print issue
|
|
xvalid_data.transforms = valid_data.transform
|
|
xvalid_data.transform = deepcopy( valid_data.transform )
|
|
search_data = SearchDataset(dataset, train_data, train_split, valid_split)
|
|
# data loader
|
|
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
|
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=workers, pin_memory=True)
|
|
valid_loader = torch.utils.data.DataLoader(xvalid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=workers, pin_memory=True)
|
|
elif dataset == 'cifar100':
|
|
cifar100_test_split = load_config('{:}/cifar100-test-split.txt'.format(config_root), None, None)
|
|
search_train_data = train_data
|
|
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
|
|
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), cifar100_test_split.xvalid)
|
|
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
|
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
|
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_test_split.xvalid), num_workers=workers, pin_memory=True)
|
|
elif dataset == 'ImageNet16-120':
|
|
imagenet_test_split = load_config('{:}/imagenet-16-120-test-split.txt'.format(config_root), None, None)
|
|
search_train_data = train_data
|
|
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
|
|
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), imagenet_test_split.xvalid)
|
|
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
|
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
|
|
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_test_split.xvalid), num_workers=workers, pin_memory=True)
|
|
else:
|
|
raise ValueError('invalid dataset : {:}'.format(dataset))
|
|
return search_loader, train_loader, valid_loader
|
|
|
|
#if __name__ == '__main__':
|
|
# train_data, test_data, xshape, class_num = dataset = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1)
|
|
# import pdb; pdb.set_trace()
|