naswot/datasets/get_dataset_with_transform.py
Jack Turner b74255e1f3 v2
2021-02-26 16:12:51 +00:00

256 lines
12 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, torch
import os.path as osp
import numpy as np
import torchvision.datasets as dset
import torchvision.transforms as transforms
from copy import deepcopy
from PIL import Image
from .DownsampledImageNet import ImageNet16
from .SearchDatasetWrap import SearchDataset
from config_utils import load_config
Dataset2Class = {'cifar10' : 10,
'cifar100': 100,
'fake':10,
'imagenet-1k-s':1000,
'imagenette2' : 10,
'imagenet-1k' : 1000,
'ImageNet16' : 1000,
'ImageNet16-150': 150,
'ImageNet16-120': 120,
'ImageNet16-200': 200}
class CUTOUT(object):
def __init__(self, length):
self.length = length
def __repr__(self):
return ('{name}(length={length})'.format(name=self.__class__.__name__, **self.__dict__))
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
imagenet_pca = {
'eigval': np.asarray([0.2175, 0.0188, 0.0045]),
'eigvec': np.asarray([
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
])
}
class Lighting(object):
def __init__(self, alphastd,
eigval=imagenet_pca['eigval'],
eigvec=imagenet_pca['eigvec']):
self.alphastd = alphastd
assert eigval.shape == (3,)
assert eigvec.shape == (3, 3)
self.eigval = eigval
self.eigvec = eigvec
def __call__(self, img):
if self.alphastd == 0.:
return img
rnd = np.random.randn(3) * self.alphastd
rnd = rnd.astype('float32')
v = rnd
old_dtype = np.asarray(img).dtype
v = v * self.eigval
v = v.reshape((3, 1))
inc = np.dot(self.eigvec, v).reshape((3,))
img = np.add(img, inc)
if old_dtype == np.uint8:
img = np.clip(img, 0, 255)
img = Image.fromarray(img.astype(old_dtype), 'RGB')
return img
def __repr__(self):
return self.__class__.__name__ + '()'
def get_datasets(name, root, cutout):
if name == 'cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
elif name == 'cifar100':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif name == 'fake':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
elif name.startswith('imagenet-1k'):
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
elif name.startswith('imagenette'):
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
elif name.startswith('ImageNet16'):
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
else:
raise TypeError("Unknow dataset : {:}".format(name))
# Data Argumentation
if name == 'cifar10' or name == 'cifar100':
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
xshape = (1, 3, 32, 32)
elif name == 'fake':
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
xshape = (1, 3, 32, 32)
elif name.startswith('ImageNet16'):
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(16, padding=2), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
xshape = (1, 3, 16, 16)
elif name == 'tiered':
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
if cutout > 0 : lists += [CUTOUT(cutout)]
train_transform = transforms.Compose(lists)
test_transform = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std)])
xshape = (1, 3, 32, 32)
elif name.startswith('imagenette'):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
xlists = []
xlists.append( transforms.ToTensor() )
xlists.append( normalize )
#train_transform = transforms.Compose(xlists)
train_transform = transforms.Compose([normalize, normalize, transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
test_transform = transforms.Compose([normalize, normalize, transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
xshape = (1, 3, 224, 224)
elif name.startswith('imagenet-1k'):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if name == 'imagenet-1k':
xlists = [transforms.RandomResizedCrop(224)]
xlists.append(
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.2))
xlists.append( Lighting(0.1))
elif name == 'imagenet-1k-s':
xlists = [transforms.RandomResizedCrop(224, scale=(0.2, 1.0))]
else: raise ValueError('invalid name : {:}'.format(name))
xlists.append( transforms.RandomHorizontalFlip(p=0.5) )
xlists.append( transforms.ToTensor() )
xlists.append( normalize )
train_transform = transforms.Compose(xlists)
test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
xshape = (1, 3, 224, 224)
else:
raise TypeError("Unknow dataset : {:}".format(name))
if name == 'cifar10':
train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR10 (root, train=False, transform=test_transform , download=True)
assert len(train_data) == 50000 and len(test_data) == 10000
elif name == 'cifar100':
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
assert len(train_data) == 50000 and len(test_data) == 10000
elif name == 'fake':
train_data = dset.FakeData(size=50000, image_size=(3, 32, 32), transform=train_transform)
test_data = dset.FakeData(size=10000, image_size=(3, 32, 32), transform=test_transform)
elif name.startswith('imagenette2'):
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
elif name.startswith('imagenet-1k'):
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
assert len(train_data) == 1281167 and len(test_data) == 50000, 'invalid number of images : {:} & {:} vs {:} & {:}'.format(len(train_data), len(test_data), 1281167, 50000)
elif name == 'ImageNet16':
train_data = ImageNet16(root, True , train_transform)
test_data = ImageNet16(root, False, test_transform)
assert len(train_data) == 1281167 and len(test_data) == 50000
elif name == 'ImageNet16-120':
train_data = ImageNet16(root, True , train_transform, 120)
test_data = ImageNet16(root, False, test_transform , 120)
assert len(train_data) == 151700 and len(test_data) == 6000
elif name == 'ImageNet16-150':
train_data = ImageNet16(root, True , train_transform, 150)
test_data = ImageNet16(root, False, test_transform , 150)
assert len(train_data) == 190272 and len(test_data) == 7500
elif name == 'ImageNet16-200':
train_data = ImageNet16(root, True , train_transform, 200)
test_data = ImageNet16(root, False, test_transform , 200)
assert len(train_data) == 254775 and len(test_data) == 10000
else: raise TypeError("Unknow dataset : {:}".format(name))
class_num = Dataset2Class[name]
return train_data, test_data, xshape, class_num
def get_nas_search_loaders(train_data, valid_data, dataset, config_root, batch_size, workers):
if isinstance(batch_size, (list,tuple)):
batch, test_batch = batch_size
else:
batch, test_batch = batch_size, batch_size
if dataset == 'cifar10':
#split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config('{:}/cifar-split.txt'.format(config_root), None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid # search over the proposed training and validation set
#logger.log('Load split file from {:}'.format(split_Fpath)) # they are two disjoint groups in the original CIFAR-10 training set
# To split data
xvalid_data = deepcopy(train_data)
if hasattr(xvalid_data, 'transforms'): # to avoid a print issue
xvalid_data.transforms = valid_data.transform
xvalid_data.transform = deepcopy( valid_data.transform )
search_data = SearchDataset(dataset, train_data, train_split, valid_split)
# data loader
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(xvalid_data, batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=workers, pin_memory=True)
elif dataset == 'cifar100':
cifar100_test_split = load_config('{:}/cifar100-test-split.txt'.format(config_root), None, None)
search_train_data = train_data
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), cifar100_test_split.xvalid)
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_test_split.xvalid), num_workers=workers, pin_memory=True)
elif dataset == 'ImageNet16-120':
imagenet_test_split = load_config('{:}/imagenet-16-120-test-split.txt'.format(config_root), None, None)
search_train_data = train_data
search_valid_data = deepcopy(valid_data) ; search_valid_data.transform = train_data.transform
search_data = SearchDataset(dataset, [search_train_data,search_valid_data], list(range(len(search_train_data))), imagenet_test_split.xvalid)
search_loader = torch.utils.data.DataLoader(search_data, batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(train_data , batch_size=batch, shuffle=True , num_workers=workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data , batch_size=test_batch, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_test_split.xvalid), num_workers=workers, pin_memory=True)
else:
raise ValueError('invalid dataset : {:}'.format(dataset))
return search_loader, train_loader, valid_loader
#if __name__ == '__main__':
# train_data, test_data, xshape, class_num = dataset = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1)
# import pdb; pdb.set_trace()