88 lines
3.1 KiB
Python
88 lines
3.1 KiB
Python
import numpy as np
|
|
import argparse
|
|
import os
|
|
import random
|
|
import pandas as pd
|
|
from collections import OrderedDict
|
|
|
|
import tabulate
|
|
parser = argparse.ArgumentParser(description='Produce tables')
|
|
parser.add_argument('--data_loc', default='../datasets/cifar/', type=str, help='dataset folder')
|
|
parser.add_argument('--save_loc', default='results', type=str, help='folder to save results')
|
|
|
|
parser.add_argument('--batch_size', default=256, type=int)
|
|
parser.add_argument('--GPU', default='0', type=str)
|
|
|
|
parser.add_argument('--seed', default=1, type=int)
|
|
parser.add_argument('--trainval', action='store_true')
|
|
|
|
parser.add_argument('--n_runs', default=500, type=int)
|
|
|
|
args = parser.parse_args()
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
|
|
|
|
from statistics import mean, median, stdev as std
|
|
|
|
import torch
|
|
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
|
|
df = []
|
|
|
|
datasets = OrderedDict()
|
|
|
|
datasets['CIFAR-10 (val)'] = ('cifar10-valid', 'x-valid', True)
|
|
datasets['CIFAR-10 (test)'] = ('cifar10', 'ori-test', False)
|
|
|
|
### CIFAR-100
|
|
datasets['CIFAR-100 (val)'] = ('cifar100', 'x-valid', False)
|
|
datasets['CIFAR-100 (test)'] = ('cifar100', 'x-test', False)
|
|
|
|
datasets['ImageNet16-120 (val)'] = ('ImageNet16-120', 'x-valid', False)
|
|
datasets['ImageNet16-120 (test)'] = ('ImageNet16-120', 'x-test', False)
|
|
|
|
|
|
dataset_top1s = OrderedDict()
|
|
|
|
for n_samples in [10, 100]:
|
|
method = f"Ours (N={n_samples})"
|
|
|
|
time = 0.
|
|
|
|
for dataset, params in datasets.items():
|
|
top1s = []
|
|
|
|
dset = params[0]
|
|
acc_type = 'accs' if 'test' in params[1] else 'val_accs'
|
|
filename = f"{args.save_loc}/{dset}_{args.n_runs}_{n_samples}_{args.seed}.t7"
|
|
|
|
full_scores = torch.load(filename)
|
|
if dataset == 'CIFAR-10 (test)':
|
|
time = median(full_scores['times'])
|
|
dataset_top1s['Search time (s)'] = time
|
|
accs = []
|
|
for n in range(args.n_runs):
|
|
acc = full_scores[acc_type][n]
|
|
accs.append(acc)
|
|
dataset_top1s[dataset] = accs
|
|
|
|
cifar10_val = f"{mean(dataset_top1s['CIFAR-10 (val)']):.2f} $\pm$ {std(dataset_top1s['CIFAR-10 (val)']):.2f}"
|
|
cifar10_test = f"{mean(dataset_top1s['CIFAR-10 (test)']):.2f} $\pm$ {std(dataset_top1s['CIFAR-10 (test)']):.2f}"
|
|
|
|
cifar100_val = f"{mean(dataset_top1s['CIFAR-100 (val)']):.2f} $\pm$ {std(dataset_top1s['CIFAR-100 (val)']):.2f}"
|
|
cifar100_test = f"{mean(dataset_top1s['CIFAR-100 (test)']):.2f} $\pm$ {std(dataset_top1s['CIFAR-100 (test)']):.2f}"
|
|
|
|
imagenet_val = f"{mean(dataset_top1s['ImageNet16-120 (val)']):.2f} $\pm$ {std(dataset_top1s['ImageNet16-120 (val)']):.2f}"
|
|
imagenet_test = f"{mean(dataset_top1s['ImageNet16-120 (test)']):.2f} $\pm$ {std(dataset_top1s['ImageNet16-120 (test)']):.2f}"
|
|
|
|
df.append([method, time, cifar10_val, cifar10_test, cifar100_val, cifar100_test, imagenet_val, imagenet_test])
|
|
|
|
|
|
df = pd.DataFrame(df, columns=['Method','Search time (s)','CIFAR-10 (val)','CIFAR-10 (test)','CIFAR-100 (val)','CIFAR-100 (test)','ImageNet16-120 (val)','ImageNet16-120 (test)' ])
|
|
df.round(2)
|
|
print(tabulate.tabulate(df.values,df.columns, tablefmt="pipe"))
|