191 lines
7.3 KiB
Python
191 lines
7.3 KiB
Python
import argparse
|
|
import nasspace
|
|
import datasets
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import os
|
|
from scores import get_score_func
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
from tqdm import trange
|
|
from statistics import mean
|
|
import time
|
|
from utils import add_dropout
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='NAS Without Training')
|
|
parser.add_argument('--data_loc', default='../cifardata/', type=str, help='dataset folder')
|
|
parser.add_argument('--api_loc', default='../NAS-Bench-201-v1_0-e61699.pth',
|
|
type=str, help='path to API')
|
|
parser.add_argument('--save_loc', default='results/ICML', type=str, help='folder to save results')
|
|
parser.add_argument('--save_string', default='naswot', type=str, help='prefix of results file')
|
|
parser.add_argument('--score', default='hook_logdet', type=str, help='the score to evaluate')
|
|
parser.add_argument('--nasspace', default='nasbench201', type=str, help='the nas search space to use')
|
|
parser.add_argument('--batch_size', default=128, type=int)
|
|
parser.add_argument('--kernel', action='store_true')
|
|
parser.add_argument('--dropout', action='store_true')
|
|
parser.add_argument('--repeat', default=1, type=int, help='how often to repeat a single image with a batch')
|
|
parser.add_argument('--augtype', default='none', type=str, help='which perturbations to use')
|
|
parser.add_argument('--sigma', default=0.05, type=float, help='noise level if augtype is "gaussnoise"')
|
|
parser.add_argument('--GPU', default='0', type=str)
|
|
parser.add_argument('--seed', default=1, type=int)
|
|
parser.add_argument('--init', default='', type=str)
|
|
parser.add_argument('--trainval', action='store_true')
|
|
parser.add_argument('--activations', action='store_true')
|
|
parser.add_argument('--cosine', action='store_true')
|
|
parser.add_argument('--dataset', default='cifar10', type=str)
|
|
parser.add_argument('--n_samples', default=100, type=int)
|
|
parser.add_argument('--n_runs', default=500, type=int)
|
|
parser.add_argument('--stem_out_channels', default=16, type=int, help='output channels of stem convolution (nasbench101)')
|
|
parser.add_argument('--num_stacks', default=3, type=int, help='#stacks of modules (nasbench101)')
|
|
parser.add_argument('--num_modules_per_stack', default=3, type=int, help='#modules per stack (nasbench101)')
|
|
parser.add_argument('--num_labels', default=1, type=int, help='#classes (nasbench101)')
|
|
|
|
args = parser.parse_args()
|
|
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
|
|
|
|
# Reproducibility
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
|
|
|
|
def get_batch_jacobian(net, x, target, device, args=None):
|
|
net.zero_grad()
|
|
x.requires_grad_(True)
|
|
y, ints = net(x)
|
|
y.backward(torch.ones_like(y))
|
|
jacob = x.grad.detach()
|
|
return jacob, target.detach(), y.detach(), ints.detach()
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
searchspace = nasspace.get_search_space(args)
|
|
train_loader = datasets.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
|
|
os.makedirs(args.save_loc, exist_ok=True)
|
|
|
|
|
|
times = []
|
|
chosen = []
|
|
acc = []
|
|
val_acc = []
|
|
topscores = []
|
|
order_fn = np.nanargmax
|
|
|
|
|
|
if args.dataset == 'cifar10':
|
|
acc_type = 'ori-test'
|
|
val_acc_type = 'x-valid'
|
|
else:
|
|
acc_type = 'x-test'
|
|
val_acc_type = 'x-valid'
|
|
|
|
|
|
|
|
runs = trange(args.n_runs, desc='acc: ')
|
|
for N in runs:
|
|
start = time.time()
|
|
indices = np.random.randint(0,len(searchspace),args.n_samples)
|
|
scores = []
|
|
|
|
npstate = np.random.get_state()
|
|
ranstate = random.getstate()
|
|
torchstate = torch.random.get_rng_state()
|
|
for arch in indices:
|
|
try:
|
|
uid = searchspace[arch]
|
|
network = searchspace.get_network(uid)
|
|
network.to(device)
|
|
if args.dropout:
|
|
add_dropout(network, args.sigma)
|
|
if args.init != '':
|
|
init_network(network, args.init)
|
|
if 'hook_' in args.score:
|
|
network.K = np.zeros((args.batch_size, args.batch_size))
|
|
def counting_forward_hook(module, inp, out):
|
|
try:
|
|
if not module.visited_backwards:
|
|
return
|
|
if isinstance(inp, tuple):
|
|
inp = inp[0]
|
|
inp = inp.view(inp.size(0), -1)
|
|
x = (inp > 0).float()
|
|
K = x @ x.t()
|
|
K2 = (1.-x) @ (1.-x.t())
|
|
network.K = network.K + K.cpu().numpy() + K2.cpu().numpy()
|
|
except:
|
|
pass
|
|
|
|
|
|
def counting_backward_hook(module, inp, out):
|
|
module.visited_backwards = True
|
|
|
|
|
|
for name, module in network.named_modules():
|
|
if 'ReLU' in str(type(module)):
|
|
#hooks[name] = module.register_forward_hook(counting_hook)
|
|
module.register_forward_hook(counting_forward_hook)
|
|
module.register_backward_hook(counting_backward_hook)
|
|
|
|
random.setstate(ranstate)
|
|
np.random.set_state(npstate)
|
|
torch.set_rng_state(torchstate)
|
|
|
|
data_iterator = iter(train_loader)
|
|
x, target = next(data_iterator)
|
|
x2 = torch.clone(x)
|
|
x2 = x2.to(device)
|
|
x, target = x.to(device), target.to(device)
|
|
jacobs, labels, y, out = get_batch_jacobian(network, x, target, device, args)
|
|
|
|
if args.kernel:
|
|
s = get_score_func(args.score)(out, labels)
|
|
elif 'hook_' in args.score:
|
|
network(x2.to(device))
|
|
s = get_score_func(args.score)(network.K, target)
|
|
elif args.repeat < args.batch_size:
|
|
s = get_score_func(args.score)(jacobs, labels, args.repeat)
|
|
else:
|
|
s = get_score_func(args.score)(jacobs, labels)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
s = 0.
|
|
|
|
scores.append(s)
|
|
|
|
#print(len(scores))
|
|
#print(scores)
|
|
#print(order_fn(scores))
|
|
|
|
|
|
|
|
best_arch = indices[order_fn(scores)]
|
|
uid = searchspace[best_arch]
|
|
topscores.append(scores[order_fn(scores)])
|
|
chosen.append(best_arch)
|
|
#acc.append(searchspace.get_accuracy(uid, acc_type, args.trainval))
|
|
acc.append(searchspace.get_final_accuracy(uid, acc_type, False))
|
|
|
|
if not args.dataset == 'cifar10' or args.trainval:
|
|
val_acc.append(searchspace.get_final_accuracy(uid, val_acc_type, args.trainval))
|
|
# val_acc.append(info.get_metrics(dset, val_acc_type)['accuracy'])
|
|
|
|
times.append(time.time()-start)
|
|
runs.set_description(f"acc: {mean(acc):.2f}% time:{mean(times):.2f}")
|
|
|
|
print(f"Final mean test accuracy: {np.mean(acc)}")
|
|
#if len(val_acc) > 1:
|
|
# print(f"Final mean validation accuracy: {np.mean(val_acc)}")
|
|
|
|
state = {'accs': acc,
|
|
'chosen': chosen,
|
|
'times': times,
|
|
'topscores': topscores,
|
|
}
|
|
|
|
dset = args.dataset if not (args.trainval and args.dataset == 'cifar10') else 'cifar10-valid'
|
|
fname = f"{args.save_loc}/{args.save_string}_{args.score}_{args.nasspace}_{dset}_{args.kernel}_{args.dropout}_{args.augtype}_{args.sigma}_{args.repeat}_{args.batch_size}_{args.n_runs}_{args.n_samples}_{args.seed}.t7"
|
|
torch.save(state, fname)
|