delete some cache file
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								__pycache__/EnergySystem.cpython-311.pyc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								__pycache__/EnergySystem.cpython-311.pyc
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								__pycache__/config.cpython-311.pyc
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								__pycache__/config.cpython-311.pyc
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| @@ -1,56 +0,0 @@ | |||||||
| import pandas as pd |  | ||||||
| import numpy as np |  | ||||||
|  |  | ||||||
| # 设置随机种子以重现结果 |  | ||||||
| np.random.seed(43) |  | ||||||
|  |  | ||||||
| def simulate_sunlight(hour, month): |  | ||||||
|     # 假设最大日照强度在正午,根据月份调整最大日照强度 |  | ||||||
|     max_intensity = 1.0  # 夏季最大日照强度 |  | ||||||
|     if month in [12, 1, 2]:  # 冬季 |  | ||||||
|         max_intensity = 0.6 |  | ||||||
|     elif month in [3, 4, 10, 11]:  # 春秋 |  | ||||||
|         max_intensity = 0.8 |  | ||||||
|      |  | ||||||
|     # 计算日照强度,模拟早晚日照弱,中午日照强 |  | ||||||
|     intensity = max_intensity * np.sin(np.pi * (hour - 6) / 12)**2 if 6 <= hour <= 18 else 0 |  | ||||||
|     return intensity |  | ||||||
|  |  | ||||||
| def simulate_factory_demand(hour, day_of_week): |  | ||||||
|     # 周末工厂需求可能减少 |  | ||||||
|     if day_of_week in [5, 6]:  # 周六和周日 |  | ||||||
|         base_demand = 3000 |  | ||||||
|     else: |  | ||||||
|         base_demand = 6000 |  | ||||||
|      |  | ||||||
|     # 日常波动 |  | ||||||
|     if 8 <= hour <= 20: |  | ||||||
|         return base_demand + np.random.randint(100, 200)  # 白天需求量大 |  | ||||||
|     else: |  | ||||||
|         return base_demand - np.random.randint(0, 100)  # 夜间需求量小 |  | ||||||
|  |  | ||||||
| def generate_data(days=10): |  | ||||||
|     records = [] |  | ||||||
|     month_demand = 0 |  | ||||||
|     for day in range(days): |  | ||||||
|         month = (day % 365) // 30 + 1 |  | ||||||
|         day_of_week = day % 7 |  | ||||||
|         day_demand = 0 |  | ||||||
|         for hour in range(24): |  | ||||||
|             for minute in [0, 10, 20, 30, 40, 50]: |  | ||||||
|                 time = f'{hour:02d}:{minute:02d}' |  | ||||||
|                 sunlight = simulate_sunlight(hour, month) |  | ||||||
|                 demand = simulate_factory_demand(hour, day_of_week) |  | ||||||
|                 day_demand+=demand |  | ||||||
|                 records.append({'time': time, 'sunlight': sunlight, 'demand': demand}) |  | ||||||
|         print(f"day:{day}, day_demand: {day_demand}") |  | ||||||
|         month_demand += day_demand |  | ||||||
|         if day%30 == 0: |  | ||||||
|             print(f"month:{month}, month_demand:{month_demand}") |  | ||||||
|             month_demand = 0 |  | ||||||
|     return pd.DataFrame(records) |  | ||||||
|  |  | ||||||
| # 生成数据 |  | ||||||
| data = generate_data(365)  # 模拟一年的数据 |  | ||||||
| data.to_csv('simulation_data.csv', index=False) |  | ||||||
| print("Data generated and saved to simulation_data.csv.") |  | ||||||
| @@ -1,24 +0,0 @@ | |||||||
| import pandas as pd |  | ||||||
| import numpy as np |  | ||||||
|  |  | ||||||
| def generate_price_schedule(): |  | ||||||
|     records = [] |  | ||||||
|     # 假设一天分为三个时段:谷时、平时、峰时 |  | ||||||
|     times = [('00:00', '06:00', 0.25),   |  | ||||||
|              ('06:00', '18:00', 0.3),   |  | ||||||
|              ('18:00', '24:00', 0.35)]   |  | ||||||
|      |  | ||||||
|     # 随机调整每天的电价以增加现实性 |  | ||||||
|     for time_start, time_end, base_price in times: |  | ||||||
|         # 随机浮动5%以内 |  | ||||||
|         fluctuation = np.random.uniform(-0.005, 0.005) |  | ||||||
|         price = round(base_price + fluctuation, 3) |  | ||||||
|         records.append({'time_start': time_start, 'time_end': time_end, 'price': price}) |  | ||||||
|      |  | ||||||
|     return pd.DataFrame(records) |  | ||||||
|  |  | ||||||
| # 生成电价计划 |  | ||||||
| price_schedule = generate_price_schedule() |  | ||||||
| price_schedule.to_csv('price_schedule.csv', index=False) |  | ||||||
| print("Price schedule generated and saved to price_schedule.csv.") |  | ||||||
| print(price_schedule) |  | ||||||
							
								
								
									
										
											BIN
										
									
								
								lightintensity.xlsx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								lightintensity.xlsx
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
		Reference in New Issue
	
	Block a user