update the format
This commit is contained in:
parent
e04e01e943
commit
3740136d7c
@ -21,6 +21,13 @@ class EnergySystem:
|
||||
self.summer_week_soc = []
|
||||
self.autumn_week_soc = []
|
||||
self.winter_week_soc = []
|
||||
self.factory_demand = []
|
||||
self.buy_price_kWh = []
|
||||
self.sell_price_kWh = []
|
||||
self.pv_generated_kWh = []
|
||||
self.grid_need_power_kW = []
|
||||
self.time = []
|
||||
self.ess_rest = 0
|
||||
self.granularity = 4
|
||||
self.season_step = self.granularity * 24 * 7 * 12
|
||||
self.season_start= self.granularity * 24 * 7 * 2
|
||||
@ -37,8 +44,10 @@ class EnergySystem:
|
||||
total_benefit = 0
|
||||
total_netto_benefit = 0
|
||||
total_gen = 0
|
||||
net_grid = 0.
|
||||
for index, row in data.iterrows():
|
||||
time = row['time']
|
||||
self.time.append(time)
|
||||
# sunlight_intensity = row['sunlight']
|
||||
pv_yield = row['PV yield[kW/kWp]']
|
||||
factory_demand = row['demand']
|
||||
@ -58,6 +67,11 @@ class EnergySystem:
|
||||
|
||||
generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW
|
||||
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
|
||||
self.pv_generated_kWh.append(generated_pv_energy)
|
||||
self.factory_demand.append(factory_demand)
|
||||
self.buy_price_kWh.append(electricity_price)
|
||||
self.sell_price_kWh.append(sell_price)
|
||||
|
||||
self.generated += generated_pv_energy
|
||||
# pv生成的能量如果比工厂的需求要大
|
||||
if generated_pv_energy >= factory_demand * time_interval:
|
||||
@ -75,6 +89,7 @@ class EnergySystem:
|
||||
# 节省的能量 = 工厂需求的能量 * 时间段
|
||||
# total_energy = factory_demand * time_interval
|
||||
saved_energy = factory_demand * time_interval
|
||||
self.grid_need_power_kW.append(0)
|
||||
# pv比工厂的需求小
|
||||
else:
|
||||
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
|
||||
@ -90,6 +105,7 @@ class EnergySystem:
|
||||
self.ess.storage -= discharging_power
|
||||
# 节省下来的能量 = pv的能量 + 放出来的能量
|
||||
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
|
||||
self.grid_need_power_kW.append(0)
|
||||
else:
|
||||
# 如果存的电量不够
|
||||
# 需要把ess中的所有电量释放出来
|
||||
@ -106,6 +122,7 @@ class EnergySystem:
|
||||
self.ess.storage = 0
|
||||
needed_from_grid = factory_demand * time_interval - saved_energy
|
||||
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
|
||||
self.grid_need_power_kW.append(needed_from_grid * 4)
|
||||
# grid_energy += net_grid
|
||||
# total_energy += net_grid
|
||||
# print(total_energy)
|
||||
@ -124,6 +141,7 @@ class EnergySystem:
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
self.ess_rest = self.ess.storage
|
||||
# summer
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
|
@ -17,12 +17,12 @@
|
||||
"pv_capacities":{
|
||||
"begin": 0,
|
||||
"end": 50000,
|
||||
"groups": 11
|
||||
"groups": 3
|
||||
},
|
||||
"ess_capacities":{
|
||||
"begin": 0,
|
||||
"end": 100000,
|
||||
"groups": 11
|
||||
"groups": 3
|
||||
},
|
||||
"time_interval":{
|
||||
"numerator": 15,
|
||||
|
@ -10,12 +10,12 @@ class pv_config:
|
||||
def get_cost_per_year(self):
|
||||
return self.capacity * self.cost_per_kW / self.lifetime
|
||||
class ess_config:
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power, storage=0):
|
||||
self.capacity = capacity
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
self.storage = 0
|
||||
self.storage = storage
|
||||
self.charge_power = charge_power
|
||||
self.discharge_power = discharge_power
|
||||
def get_cost(self):
|
||||
|
807
main.ipynb
807
main.ipynb
File diff suppressed because one or more lines are too long
162
main.py
162
main.py
@ -1,5 +1,9 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[39]:
|
||||
|
||||
|
||||
import os
|
||||
import glob
|
||||
import shutil
|
||||
@ -24,6 +28,9 @@ folder_path = 'plots'
|
||||
clear_folder_make_ess_pv(folder_path)
|
||||
|
||||
|
||||
# In[40]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
@ -31,6 +38,10 @@ import pandas as pd
|
||||
from EnergySystem import EnergySystem
|
||||
from config import pv_config, grid_config, ess_config
|
||||
|
||||
|
||||
# In[41]:
|
||||
|
||||
|
||||
import json
|
||||
|
||||
print("Version 0.0.5")
|
||||
@ -38,6 +49,9 @@ print("Version 0.0.5")
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
|
||||
|
||||
|
||||
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
|
||||
print(time_interval)
|
||||
|
||||
@ -102,7 +116,7 @@ ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
|
||||
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[42]:
|
||||
|
||||
|
||||
hour_demand = []
|
||||
@ -118,6 +132,9 @@ plt.savefig('plots/demand.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[43]:
|
||||
|
||||
|
||||
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
|
||||
df=results
|
||||
df = df.astype(float)
|
||||
@ -154,7 +171,7 @@ def draw_results(results, filename, title_benefit, annot_benefit=False, figure_s
|
||||
plt.savefig(filename)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[44]:
|
||||
|
||||
|
||||
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
|
||||
@ -202,6 +219,11 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[45]:
|
||||
|
||||
|
||||
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
|
||||
df = costs
|
||||
@ -232,6 +254,10 @@ def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[46]:
|
||||
|
||||
|
||||
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
|
||||
@ -280,12 +306,21 @@ def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[47]:
|
||||
|
||||
|
||||
def cal_profit(es: EnergySystem, saved_money, days):
|
||||
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
|
||||
return profit
|
||||
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
|
||||
|
||||
# In[48]:
|
||||
|
||||
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days, storage=0):
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
@ -295,7 +330,8 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity)
|
||||
discharge_power=ess_capacity,
|
||||
storage=storage)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
@ -306,7 +342,22 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
|
||||
results = cal_profit(energySystem, benefit, days)
|
||||
overload_cnt = energySystem.overload_cnt
|
||||
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
|
||||
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)
|
||||
return (results,
|
||||
overload_cnt,
|
||||
costs,
|
||||
netto_benefit,
|
||||
gen_energy,
|
||||
energySystem.generated,
|
||||
energySystem.ess_rest,
|
||||
energySystem.factory_demand,
|
||||
energySystem.buy_price_kWh,
|
||||
energySystem.sell_price_kWh,
|
||||
energySystem.pv_generated_kWh,
|
||||
energySystem.grid_need_power_kW,
|
||||
energySystem.time)
|
||||
|
||||
|
||||
# In[49]:
|
||||
|
||||
|
||||
months_results = []
|
||||
@ -315,6 +366,8 @@ months_overload = []
|
||||
months_nettos = []
|
||||
months_gen_energy = []
|
||||
months_gen_energy2 = []
|
||||
months_ess_rest = pd.DataFrame(30, index=pv_capacities, columns= ess_capacities)
|
||||
months_csv_data = {}
|
||||
for index, month_data in enumerate(months_data):
|
||||
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
@ -322,15 +375,61 @@ for index, month_data in enumerate(months_data):
|
||||
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
factory_demands = {}
|
||||
buy_prices= {}
|
||||
sell_prices = {}
|
||||
pv_generates = {}
|
||||
grid_need_powers = {}
|
||||
times = {}
|
||||
for pv_capacity in pv_capacities:
|
||||
factory_demands[pv_capacity] = {}
|
||||
buy_prices[pv_capacity] = {}
|
||||
sell_prices[pv_capacity] = {}
|
||||
pv_generates[pv_capacity] = {}
|
||||
grid_need_powers[pv_capacity] = {}
|
||||
times[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])
|
||||
(result,
|
||||
overload,
|
||||
cost,
|
||||
netto,
|
||||
gen_energy,
|
||||
gen_energy2,
|
||||
ess_rest,
|
||||
factory_demand,
|
||||
buy_price,
|
||||
sell_price,
|
||||
pv_generate,
|
||||
grid_need_power,
|
||||
time) = generate_data(pv_capacity=pv_capacity,
|
||||
pv_cost_per_kW=pv_cost_per_kW,
|
||||
pv_lifetime=pv_lifetime,
|
||||
pv_loss=pv_loss,
|
||||
ess_capacity=ess_capacity,
|
||||
ess_cost_per_kW=ess_cost_per_kW,
|
||||
ess_lifetime=ess_lifetime,
|
||||
ess_loss=ess_loss,
|
||||
grid_capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price=sell_price,
|
||||
time_interval=time_interval,
|
||||
data=month_data,
|
||||
days=months_days[index],
|
||||
storage=months_ess_rest.loc[pv_capacity, ess_capacity])
|
||||
results.loc[pv_capacity,ess_capacity] = result
|
||||
overload_cnt.loc[pv_capacity,ess_capacity] = overload
|
||||
costs.loc[pv_capacity,ess_capacity] = cost
|
||||
nettos.loc[pv_capacity,ess_capacity] = netto
|
||||
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
|
||||
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
|
||||
months_ess_rest.loc[pv_capacity, ess_capacity] = ess_rest
|
||||
factory_demands[pv_capacity][ess_capacity] = factory_demand
|
||||
buy_prices[pv_capacity][ess_capacity] = buy_price
|
||||
sell_prices[pv_capacity][ess_capacity] = sell_price
|
||||
pv_generates[pv_capacity][ess_capacity] = pv_generate
|
||||
grid_need_powers[pv_capacity][ess_capacity] = grid_need_power
|
||||
times[pv_capacity][ess_capacity] = time
|
||||
months_csv_data[index] = {"factory_demand": factory_demands, "buy_price": buy_prices, "sell_price": sell_prices, "pv_generate": pv_generates, "grid_need_power": grid_need_powers, "time": times}
|
||||
months_results.append(results)
|
||||
months_costs.append(costs)
|
||||
months_overload.append(overload_cnt)
|
||||
@ -349,7 +448,6 @@ for index, month_data in enumerate(months_data):
|
||||
figure_size=figure_size,
|
||||
days=months_days[index],
|
||||
granularity=granularity)
|
||||
|
||||
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
@ -358,7 +456,6 @@ annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
|
||||
# get the yearly results
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
@ -399,11 +496,53 @@ draw_overload(overload_cnt=annual_overload,
|
||||
figure_size=figure_size)
|
||||
|
||||
|
||||
# In[50]:
|
||||
|
||||
|
||||
def collapse_months_csv_data(months_csv_data, column_name,pv_capacies, ess_capacities):
|
||||
data = {}
|
||||
for pv_capacity in pv_capacities:
|
||||
data[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
annual_data = []
|
||||
for index, month_data in enumerate(months_data):
|
||||
annual_data.extend(months_csv_data[index][column_name][pv_capacity][ess_capacity])
|
||||
# months_csv_data[index][column_name][pv_capacity][ess_capacity] = months_csv_data[index][column_name][pv_capacity][ess_capacity].tolist()
|
||||
|
||||
data[pv_capacity][ess_capacity] = annual_data
|
||||
return data
|
||||
|
||||
|
||||
# In[51]:
|
||||
|
||||
|
||||
annual_pv_gen = collapse_months_csv_data(months_csv_data, "pv_generate", pv_capacities, ess_capacities)
|
||||
annual_time = collapse_months_csv_data(months_csv_data, "time", pv_capacities, ess_capacities)
|
||||
annual_buy_price = collapse_months_csv_data(months_csv_data, "buy_price",pv_capacities, ess_capacities)
|
||||
annual_sell_price = collapse_months_csv_data(months_csv_data, "sell_price", pv_capacities, ess_capacities)
|
||||
annual_factory_demand = collapse_months_csv_data(months_csv_data, "factory_demand", pv_capacities, ess_capacities)
|
||||
annual_grid_need_power = collapse_months_csv_data(months_csv_data, "grid_need_power", pv_capacities, ess_capacities)
|
||||
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
with open(f'data/annual_data-pv-{pv_capacity}-ess-{ess_capacity}.csv', 'w') as f:
|
||||
f.write("time,pv_generate,factory_demand,buy_price,sell_price,grid_need_power\n")
|
||||
for i in range(len(annual_time[pv_capacity][ess_capacity])):
|
||||
f.write(f"{annual_time[pv_capacity][ess_capacity][i]}, {int(annual_pv_gen[pv_capacity][ess_capacity][i])}, {int(annual_factory_demand[pv_capacity][ess_capacity][i])}, {int(annual_buy_price[pv_capacity][ess_capacity][i]*1000)}, {int(annual_sell_price[pv_capacity][ess_capacity][i]*1000)}, {int(annual_grid_need_power[pv_capacity][ess_capacity][i])}\n")
|
||||
|
||||
|
||||
|
||||
# In[52]:
|
||||
|
||||
|
||||
def save_data(data, filename):
|
||||
data.to_csv(filename+'.csv')
|
||||
data.to_json(filename + '.json')
|
||||
|
||||
|
||||
# In[53]:
|
||||
|
||||
|
||||
if not os.path.isdir('data'):
|
||||
os.makedirs('data')
|
||||
|
||||
@ -411,8 +550,15 @@ save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess
|
||||
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
|
||||
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
|
||||
|
||||
|
||||
# In[54]:
|
||||
|
||||
|
||||
draw_results(annual_result, 'plots/test.png', 'test', False)
|
||||
|
||||
|
||||
# In[55]:
|
||||
|
||||
|
||||
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user