add draw.py
This commit is contained in:
parent
4b72bc6fa3
commit
d791ac481a
122
draw.py
Normal file
122
draw.py
Normal file
@ -0,0 +1,122 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import os
|
||||
import seaborn as sns
|
||||
import json
|
||||
from matplotlib.colors import LinearSegmentedColormap
|
||||
|
||||
|
||||
def read_data(file_name: str):
|
||||
with open(file_name, 'r') as f:
|
||||
data = json.load(f)
|
||||
for key, value in data.items():
|
||||
for subkey, subvalue in value.items():
|
||||
data[key][subkey] = float(subvalue)
|
||||
df = pd.DataFrame.from_dict(data, orient='index')
|
||||
df.index = pd.to_numeric(df.index)
|
||||
df.columns = pd.to_numeric(df.columns)
|
||||
return df
|
||||
|
||||
def draw_results(results, filename, title, annot_benefit=False, figure_size=(10, 10)):
|
||||
df= results
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = sns.color_palette("coolwarm", as_cmap=True)
|
||||
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
|
||||
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{x:.2f}"))
|
||||
# ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f'))
|
||||
plt.title(title)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
|
||||
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
|
||||
df = costs
|
||||
df = df.astype(int)
|
||||
print(df.index)
|
||||
df.index = df.index / 1000
|
||||
print(df.columns)
|
||||
df.columns = df.columns / 1000
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
|
||||
plt.title(title_cost)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
print(filename)
|
||||
plt.savefig(filename)
|
||||
|
||||
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10)):
|
||||
df = overload_cnt
|
||||
df = df.astype(int)
|
||||
df.index = df.index / 1000
|
||||
df.columns = df.columns / 1000
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
max_scale = max(abs(min_value/1000), abs(max_value/1000))
|
||||
|
||||
plt.figure(figsize=figure_size)
|
||||
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
|
||||
ax = sns.heatmap(df/(4*24*365), fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
|
||||
cbar = ax.collections[0].colorbar
|
||||
cbar.set_ticks([0, 0.25, 0.5, 0.75, 1])
|
||||
cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%'])
|
||||
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
|
||||
|
||||
plt.title(title_unmet)
|
||||
plt.gca().invert_yaxis()
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
|
||||
directory = 'data/'
|
||||
|
||||
file_list = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
|
||||
|
||||
|
||||
split_files = [f.split('-') for f in file_list]
|
||||
|
||||
for f in split_files:
|
||||
print(f[-1])
|
||||
costs_files = [f for f in split_files if f[-1].endswith('costs.json')]
|
||||
print(f'find costs files: {costs_files}')
|
||||
overload_files = [f for f in split_files if f[-1].endswith('overload_cnt.json')]
|
||||
print(f'find overload files: {overload_files}')
|
||||
results_files = [f for f in split_files if f[-1].endswith('results.json')]
|
||||
print(f'find results files: {results_files}')
|
||||
|
||||
costs_dfs = [read_data(directory + '-'.join(f)) for f in costs_files]
|
||||
overload_dfs = [read_data(directory + '-'.join(f)) for f in overload_files]
|
||||
results_dfs = [read_data(directory + '-'.join(f)) for f in results_files]
|
||||
|
||||
for costs_df, overload_df, results_df in zip(costs_dfs, overload_dfs, results_dfs):
|
||||
# print(costs_df.index)
|
||||
# print(pd.to_numeric(costs_df.columns))
|
||||
# costs_df.index = pd.to_numeric(costs_df.columns )
|
||||
# costs_df.columns = pd.to_numeric(costs_df.index)
|
||||
print(costs_df)
|
||||
draw_cost(costs_df, f'plots/costs-{int(costs_df.columns[-1])}.png', f'Costs for PV-{int(costs_df.columns[-1])}MW ESS-{int(costs_df.index[-1])}MWh', annot_cost=True)
|
||||
# overload_df.index = pd.to_numeric(overload_df.columns, errors='coerce')
|
||||
# overload_df.columns = pd.to_numeric(overload_df.columns, errors='coerce')
|
||||
print(overload_df)
|
||||
# draw_overload(overload_df, f'plots/overload-{overload_df.columns[-1]}', f'Overload for PV-{overload_df.columns[-1]}MW ESS-{overload_df.index[-1]}MWh', annot_unmet=True)
|
||||
# results_df.index = pd.to_numeric(results_df.columns, errors='coerce')
|
||||
# results_df.columns = pd.to_numeric(results_df.columns, errors='coerce')
|
||||
# draw_results(results_df, f'plots/results-{results_df.columns[-1]}', f'Results for PV-{results_df.columns[-1]}MW ESS-{results_df.index[-1]}MWh', annot_benefit=True)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user