Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
f1b2959143 | ||
|
df2f953678 | ||
|
3740136d7c | ||
|
e04e01e943 |
170
EnergySystem.py
170
EnergySystem.py
@ -21,6 +21,13 @@ class EnergySystem:
|
||||
self.summer_week_soc = []
|
||||
self.autumn_week_soc = []
|
||||
self.winter_week_soc = []
|
||||
self.factory_demand = []
|
||||
self.buy_price_kWh = []
|
||||
self.sell_price_kWh = []
|
||||
self.pv_generated_kWh = []
|
||||
self.grid_need_power_kW = []
|
||||
self.time = []
|
||||
self.ess_rest = 0
|
||||
self.granularity = 4
|
||||
self.season_step = self.granularity * 24 * 7 * 12
|
||||
self.season_start= self.granularity * 24 * 7 * 2
|
||||
@ -30,15 +37,32 @@ class EnergySystem:
|
||||
def get_cost(self):
|
||||
return self.ess.get_cost()+self.pv.get_cost()
|
||||
|
||||
# 优先使用PV供电给工厂 - 如果PV输出能满足工厂的需求,则直接供电,多余的电能用来给ESS充电。
|
||||
# PV不足时使用ESS补充 - 如果PV输出不足以满足工厂需求,首先从ESS获取所需电量。
|
||||
# 如果ESS也不足以满足需求,再从电网获取 - 当ESS中的存储电量也不足以补充时,再从电网购买剩余所需电量。
|
||||
def simulate(self, data, time_interval):
|
||||
"""
|
||||
The program will use the PV to supply the factory first. If the PV output can meet the factory's demand, it will be directly powered, and the excess electrical energy will be used to charge the ESS. Program will use the PV to supply the Ess.
|
||||
|
||||
When the PV is insufficient, the ESS is used to supplement. If the PV output is not enough to meet the factory's demand, the required power is first obtained from the ESS.
|
||||
|
||||
If the ESS is also insufficient to meet the demand, it will be obtained from the grid. When the stored power in the ESS is also insufficient to supplement, the remaining required power will be purchased from the grid.
|
||||
|
||||
Args:
|
||||
data: pandas.DataFrame
|
||||
The data that contains the factory's demand, PV output, and electricity price.
|
||||
time_interval: float
|
||||
The time interval of the data in hours.
|
||||
|
||||
Returns:
|
||||
tuple
|
||||
The total benefit, total netto benefit, and total generated energy.
|
||||
|
||||
"""
|
||||
total_benefit = 0
|
||||
total_netto_benefit = 0
|
||||
total_gen = 0
|
||||
net_grid = 0.
|
||||
for index, row in data.iterrows():
|
||||
time = row['time']
|
||||
self.time.append(time)
|
||||
# sunlight_intensity = row['sunlight']
|
||||
pv_yield = row['PV yield[kW/kWp]']
|
||||
factory_demand = row['demand']
|
||||
@ -46,100 +70,122 @@ class EnergySystem:
|
||||
sell_price = row['sell']
|
||||
# electricity_price = self.grid.get_price_for_time(time)
|
||||
|
||||
if time == '00:00':
|
||||
self.day_generated.append(self.generated)
|
||||
self.generated = 0
|
||||
if time.endswith('14:00'):
|
||||
soc = self.ess.storage / self.ess.capacity
|
||||
self.hour_stored.append(soc)
|
||||
if time.endswith('08:00'):
|
||||
soc = self.ess.storage / self.ess.capacity
|
||||
self.hour_stored_2.append(soc)
|
||||
# if time == '00:00':
|
||||
# self.day_generated.append(self.generated)
|
||||
# self.generated = 0
|
||||
# if time.endswith('14:00'):
|
||||
# soc = self.ess.storage / self.ess.capacity
|
||||
# self.hour_stored.append(soc)
|
||||
# if time.endswith('08:00'):
|
||||
# soc = self.ess.storage / self.ess.capacity
|
||||
# self.hour_stored_2.append(soc)
|
||||
|
||||
# `generated_pv_power`: the power generated by the PV in kW
|
||||
# `generated_pv_energy`: the energy generated by the PV in kWh
|
||||
generated_pv_power = self.pv.capacity * pv_yield
|
||||
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss
|
||||
|
||||
self.pv_generated_kWh.append(generated_pv_energy)
|
||||
self.factory_demand.append(factory_demand)
|
||||
self.buy_price_kWh.append(electricity_price)
|
||||
self.sell_price_kWh.append(sell_price)
|
||||
|
||||
generated_pv_power = self.pv.capacity * pv_yield# 生成的功率,单位 kW
|
||||
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
|
||||
self.generated += generated_pv_energy
|
||||
# pv生成的能量如果比工厂的需求要大
|
||||
# generated_pv_energy is larger than factory_demand energy
|
||||
if generated_pv_energy >= factory_demand * time_interval:
|
||||
# 剩余的能量(kwh) = pv生成的能量 - 工厂需求的功率 * 时间间隔
|
||||
"""
|
||||
That means the generated energy is enough to power the factory.
|
||||
The surplus energy will be used to charge the ESS.
|
||||
|
||||
surplus_energy: The energy that is left after powering the factory.
|
||||
formula: generated_pv_energy - factory_demand * time_interval
|
||||
|
||||
charge_to_ess: The energy that will be charged to the ESS.
|
||||
formula: min(surplus_energy, ess.charge_power * time_interval, ess.capacity - ess.storage)
|
||||
|
||||
surplus_after_ess: The energy that is left after charging the ESS.
|
||||
"""
|
||||
surplus_energy = generated_pv_energy - factory_demand * time_interval
|
||||
# 要充到ess中的能量 = min(剩余的能量,ess的充电功率*时间间隔(ess在时间间隔内能充进的电量),ess的容量-ess储存的能量(ess中能冲进去的电量))
|
||||
charge_to_ess = min(surplus_energy, self.ess.charge_power * time_interval, self.ess.capacity - self.ess.storage)
|
||||
self.ess.storage += charge_to_ess
|
||||
surplus_after_ess = surplus_energy - charge_to_ess
|
||||
# 如果还有电量盈余,且pv功率大于ess的充电功率+工厂的需求功率则准备卖电
|
||||
"""
|
||||
If there is still surplus energy after charging the ESS, and the generated PV power is greater than the sum of the ESS's charge power and the factory's demand power, the surplus energy will be sold to the grid.
|
||||
"""
|
||||
if surplus_after_ess > 0 and generated_pv_power > self.ess.charge_power + factory_demand:
|
||||
sold_to_grid = surplus_after_ess
|
||||
sell_income = sold_to_grid * sell_price
|
||||
total_benefit += sell_income
|
||||
# 节省的能量 = 工厂需求的能量 * 时间段
|
||||
# total_energy = factory_demand * time_interval
|
||||
"""
|
||||
Saved energy is the energy that is saved by using the PV to power the factory.
|
||||
"""
|
||||
saved_energy = factory_demand * time_interval
|
||||
# pv比工厂的需求小
|
||||
self.grid_need_power_kW.append(0)
|
||||
else:
|
||||
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
|
||||
"""
|
||||
If the generated energy is not enough to power the factory, the ESS will be used to supplement the energy.
|
||||
|
||||
needed_from_ess: The energy that is needed from the ESS to power the factory.
|
||||
formula: factory_demand * time_interval - generated_pv_energy
|
||||
"""
|
||||
needed_from_ess = factory_demand * time_interval - generated_pv_energy
|
||||
# 如果ess中存的电量比需要的多
|
||||
"""
|
||||
If the ESS has enough stored energy to power the factory, the energy will be taken from the ESS.
|
||||
"""
|
||||
if self.ess.storage * self.ess.loss >= needed_from_ess:
|
||||
# 取出电量
|
||||
if self.ess.discharge_power * time_interval * self.ess.loss < needed_from_ess:
|
||||
discharging_power = self.ess.discharge_power * time_interval
|
||||
else:
|
||||
discharging_power = needed_from_ess / self.ess.loss
|
||||
|
||||
self.ess.storage -= discharging_power
|
||||
# 节省下来的能量 = pv的能量 + 放出来的能量
|
||||
"""
|
||||
In this case, the energy that is needed from the grid is 0.
|
||||
"""
|
||||
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
|
||||
self.grid_need_power_kW.append(0)
|
||||
else:
|
||||
# 如果存的电量不够
|
||||
# 需要把ess中的所有电量释放出来
|
||||
"""
|
||||
If the ESS does not have enough stored energy to power the factory, the energy will be taken from the grid.
|
||||
"""
|
||||
if self.grid.capacity * time_interval + generated_pv_energy + self.ess.storage * self.ess.loss < factory_demand * time_interval:
|
||||
self.afford = False
|
||||
self.overload_cnt+=1
|
||||
log = f"index: {index}, time: {time}, SoC:{self.ess.storage / self.ess.capacity}%, storage: {self.ess.storage}, pv_gen:{generated_pv_power}, power_demand: {factory_demand}, overload_cnt:{self.overload_cnt}, day:{int(index/96) + 1}"
|
||||
self.unmet.append((index,time,factory_demand,generated_pv_power))
|
||||
# with open(f'plots/summary/ess-{self.ess.capacity}-pv-{self.pv.capacity}', 'a') as f:
|
||||
# f.write(log)
|
||||
# print(log)
|
||||
# self.unmet.append(log)
|
||||
saved_energy = generated_pv_energy + self.ess.storage * self.ess.loss
|
||||
self.ess.storage = 0
|
||||
needed_from_grid = factory_demand * time_interval - saved_energy
|
||||
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
|
||||
# grid_energy += net_grid
|
||||
# total_energy += net_grid
|
||||
# print(total_energy)
|
||||
# 工厂需求量-总能量
|
||||
# unmet_demand = max(0, factory_demand * time_interval - total_energy)
|
||||
# benefit = (total_energy - unmet_demand) * electricity_price
|
||||
self.grid_need_power_kW.append(needed_from_grid * 4)
|
||||
total_gen += saved_energy
|
||||
benefit = (saved_energy) * electricity_price
|
||||
cost = net_grid * electricity_price
|
||||
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
|
||||
total_netto_benefit += benefit
|
||||
total_benefit += benefit - cost
|
||||
# # spring
|
||||
week_start = self.season_start
|
||||
week_end = self.week_length + week_start
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# summer
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.summer_week_gen.append(generated_pv_power)
|
||||
# self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# # autumn
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.autumn_week_gen.append(generated_pv_power)
|
||||
# self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# week_start += self.season_step
|
||||
# week_end += self.season_step
|
||||
# if index in range(week_start, week_end):
|
||||
# self.winter_week_gen.append(generated_pv_power)
|
||||
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
print_season_flag = False
|
||||
if print_season_flag == True:
|
||||
week_start = self.season_start
|
||||
week_end = self.week_length + week_start
|
||||
if index in range(week_start, week_end):
|
||||
self.spring_week_gen.append(generated_pv_power)
|
||||
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
self.ess_rest = self.ess.storage
|
||||
# summer
|
||||
week_start += self.season_step
|
||||
week_end += self.season_step
|
||||
if index in range(week_start, week_end):
|
||||
self.summer_week_gen.append(generated_pv_power)
|
||||
self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
# # autumn
|
||||
week_start += self.season_step
|
||||
week_end += self.season_step
|
||||
if index in range(week_start, week_end):
|
||||
self.autumn_week_gen.append(generated_pv_power)
|
||||
self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
week_start += self.season_step
|
||||
week_end += self.season_step
|
||||
if index in range(week_start, week_end):
|
||||
self.winter_week_gen.append(generated_pv_power)
|
||||
self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
|
||||
|
||||
return (total_benefit, total_netto_benefit, total_gen)
|
10
config.json
10
config.json
@ -17,12 +17,12 @@
|
||||
"pv_capacities":{
|
||||
"begin": 0,
|
||||
"end": 50000,
|
||||
"groups": 11
|
||||
"groups": 3
|
||||
},
|
||||
"ess_capacities":{
|
||||
"begin": 0,
|
||||
"end": 100000,
|
||||
"groups": 11
|
||||
"groups": 3
|
||||
},
|
||||
"time_interval":{
|
||||
"numerator": 15,
|
||||
@ -43,5 +43,11 @@
|
||||
"cost": "Costs of Microgrid system [m-EUR]",
|
||||
"benefit": "Financial Profit Based on Py & Ess Configuration (k-EUR / year)",
|
||||
"roi": "ROI"
|
||||
},
|
||||
"data_path": {
|
||||
"pv_yield": "read_data/Serbia.csv",
|
||||
"demand": "read_data/factory_power1.csv",
|
||||
"sell": "read_data/electricity_price_data_sell.csv",
|
||||
"buy": "read_data/electricity_price_data.csv"
|
||||
}
|
||||
}
|
@ -10,12 +10,12 @@ class pv_config:
|
||||
def get_cost_per_year(self):
|
||||
return self.capacity * self.cost_per_kW / self.lifetime
|
||||
class ess_config:
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
|
||||
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power, storage=0):
|
||||
self.capacity = capacity
|
||||
self.cost_per_kW = cost_per_kW
|
||||
self.lifetime = lifetime
|
||||
self.loss = loss
|
||||
self.storage = 0
|
||||
self.storage = storage
|
||||
self.charge_power = charge_power
|
||||
self.discharge_power = discharge_power
|
||||
def get_cost(self):
|
||||
|
353
main.ipynb
353
main.ipynb
File diff suppressed because one or more lines are too long
189
main.py
189
main.py
@ -1,5 +1,9 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# In[83]:
|
||||
|
||||
|
||||
import os
|
||||
import glob
|
||||
import shutil
|
||||
@ -24,6 +28,9 @@ folder_path = 'plots'
|
||||
clear_folder_make_ess_pv(folder_path)
|
||||
|
||||
|
||||
# In[84]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
@ -31,15 +38,22 @@ import pandas as pd
|
||||
from EnergySystem import EnergySystem
|
||||
from config import pv_config, grid_config, ess_config
|
||||
|
||||
|
||||
# In[85]:
|
||||
|
||||
|
||||
import json
|
||||
|
||||
print("Version 0.0.5")
|
||||
print("Version 0.0.7\n")
|
||||
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
|
||||
|
||||
|
||||
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
|
||||
print(time_interval)
|
||||
# print(time_interval)
|
||||
|
||||
pv_loss = js_data["pv"]["loss"]
|
||||
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
|
||||
@ -102,7 +116,7 @@ ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
|
||||
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[86]:
|
||||
|
||||
|
||||
hour_demand = []
|
||||
@ -118,6 +132,9 @@ plt.savefig('plots/demand.png')
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[87]:
|
||||
|
||||
|
||||
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
|
||||
df=results
|
||||
df = df.astype(float)
|
||||
@ -154,7 +171,7 @@ def draw_results(results, filename, title_benefit, annot_benefit=False, figure_s
|
||||
plt.savefig(filename)
|
||||
|
||||
|
||||
# In[ ]:
|
||||
# In[88]:
|
||||
|
||||
|
||||
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
|
||||
@ -167,7 +184,7 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
if 0 in df.index and 0 in df.columns:
|
||||
df.loc[0,0] = 100
|
||||
df[df > 80] = 100
|
||||
print(df)
|
||||
# print(df)
|
||||
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
@ -176,7 +193,7 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
df.columns = df.columns.map(int)
|
||||
min_value = df.min().min()
|
||||
max_value = df.max().max()
|
||||
print(max_value)
|
||||
# print(max_value)
|
||||
max_scale = max(abs(min_value), abs(max_value))
|
||||
|
||||
df[df.columns[-1] + 1] = df.iloc[:, -1]
|
||||
@ -202,6 +219,11 @@ def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, fig
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[89]:
|
||||
|
||||
|
||||
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
|
||||
df = costs
|
||||
@ -232,16 +254,20 @@ def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[90]:
|
||||
|
||||
|
||||
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
|
||||
df = overload_cnt
|
||||
print(days, granularity)
|
||||
# print(days, granularity)
|
||||
coef = 60 / granularity * days * 24
|
||||
print(coef)
|
||||
print(df)
|
||||
# print(coef)
|
||||
# print(df)
|
||||
df = ( coef - df) / coef
|
||||
print(df)
|
||||
# print(df)
|
||||
|
||||
df = df.astype(float)
|
||||
df.index = df.index / 1000
|
||||
@ -280,12 +306,21 @@ def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure
|
||||
plt.xlabel('ESS Capacity (MWh)')
|
||||
plt.ylabel('PV Capacity (MW)')
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
# In[91]:
|
||||
|
||||
|
||||
def cal_profit(es: EnergySystem, saved_money, days):
|
||||
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
|
||||
return profit
|
||||
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
|
||||
|
||||
# In[92]:
|
||||
|
||||
|
||||
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days, storage=0):
|
||||
pv = pv_config(capacity=pv_capacity,
|
||||
cost_per_kW=pv_cost_per_kW,
|
||||
lifetime=pv_lifetime,
|
||||
@ -295,7 +330,8 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
|
||||
lifetime=ess_lifetime,
|
||||
loss=ess_loss,
|
||||
charge_power=ess_capacity,
|
||||
discharge_power=ess_capacity)
|
||||
discharge_power=ess_capacity,
|
||||
storage=storage)
|
||||
grid = grid_config(capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price= sell_price)
|
||||
@ -306,31 +342,96 @@ def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacit
|
||||
results = cal_profit(energySystem, benefit, days)
|
||||
overload_cnt = energySystem.overload_cnt
|
||||
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
|
||||
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)
|
||||
return (results,
|
||||
overload_cnt,
|
||||
costs,
|
||||
netto_benefit,
|
||||
gen_energy,
|
||||
energySystem.generated,
|
||||
energySystem.ess_rest,
|
||||
energySystem.factory_demand,
|
||||
energySystem.buy_price_kWh,
|
||||
energySystem.sell_price_kWh,
|
||||
energySystem.pv_generated_kWh,
|
||||
energySystem.grid_need_power_kW,
|
||||
energySystem.time)
|
||||
|
||||
|
||||
|
||||
# In[93]:
|
||||
|
||||
|
||||
from tqdm import tqdm
|
||||
months_results = []
|
||||
months_costs = []
|
||||
months_overload = []
|
||||
months_nettos = []
|
||||
months_gen_energy = []
|
||||
months_gen_energy2 = []
|
||||
for index, month_data in enumerate(months_data):
|
||||
months_ess_rest = pd.DataFrame(30, index=pv_capacities, columns= ess_capacities)
|
||||
months_csv_data = {}
|
||||
for index, month_data in tqdm(enumerate(months_data), total=len(months_data), position=0, leave= True):
|
||||
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
for pv_capacity in pv_capacities:
|
||||
factory_demands = {}
|
||||
buy_prices= {}
|
||||
sell_prices = {}
|
||||
pv_generates = {}
|
||||
grid_need_powers = {}
|
||||
times = {}
|
||||
for pv_capacity in tqdm(pv_capacities, total=len(pv_capacities), desc=f'generating pv for month {index + 1}',position=1, leave=False):
|
||||
factory_demands[pv_capacity] = {}
|
||||
buy_prices[pv_capacity] = {}
|
||||
sell_prices[pv_capacity] = {}
|
||||
pv_generates[pv_capacity] = {}
|
||||
grid_need_powers[pv_capacity] = {}
|
||||
times[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])
|
||||
(result,
|
||||
overload,
|
||||
cost,
|
||||
netto,
|
||||
gen_energy,
|
||||
gen_energy2,
|
||||
ess_rest,
|
||||
factory_demand,
|
||||
buy_price,
|
||||
sell_price,
|
||||
pv_generate,
|
||||
grid_need_power,
|
||||
time) = generate_data(pv_capacity=pv_capacity,
|
||||
pv_cost_per_kW=pv_cost_per_kW,
|
||||
pv_lifetime=pv_lifetime,
|
||||
pv_loss=pv_loss,
|
||||
ess_capacity=ess_capacity,
|
||||
ess_cost_per_kW=ess_cost_per_kW,
|
||||
ess_lifetime=ess_lifetime,
|
||||
ess_loss=ess_loss,
|
||||
grid_capacity=grid_capacity,
|
||||
grid_loss=grid_loss,
|
||||
sell_price=sell_price,
|
||||
time_interval=time_interval,
|
||||
data=month_data,
|
||||
days=months_days[index],
|
||||
storage=months_ess_rest.loc[pv_capacity, ess_capacity])
|
||||
results.loc[pv_capacity,ess_capacity] = result
|
||||
overload_cnt.loc[pv_capacity,ess_capacity] = overload
|
||||
costs.loc[pv_capacity,ess_capacity] = cost
|
||||
nettos.loc[pv_capacity,ess_capacity] = netto
|
||||
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
|
||||
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
|
||||
months_ess_rest.loc[pv_capacity, ess_capacity] = ess_rest
|
||||
factory_demands[pv_capacity][ess_capacity] = factory_demand
|
||||
buy_prices[pv_capacity][ess_capacity] = buy_price
|
||||
sell_prices[pv_capacity][ess_capacity] = sell_price
|
||||
pv_generates[pv_capacity][ess_capacity] = pv_generate
|
||||
grid_need_powers[pv_capacity][ess_capacity] = grid_need_power
|
||||
times[pv_capacity][ess_capacity] = time
|
||||
months_csv_data[index] = {"factory_demand": factory_demands, "buy_price": buy_prices, "sell_price": sell_prices, "pv_generate": pv_generates, "grid_need_power": grid_need_powers, "time": times}
|
||||
months_results.append(results)
|
||||
months_costs.append(costs)
|
||||
months_overload.append(overload_cnt)
|
||||
@ -349,7 +450,6 @@ for index, month_data in enumerate(months_data):
|
||||
figure_size=figure_size,
|
||||
days=months_days[index],
|
||||
granularity=granularity)
|
||||
|
||||
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
@ -358,7 +458,6 @@ annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
|
||||
|
||||
|
||||
|
||||
# get the yearly results
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
@ -399,11 +498,58 @@ draw_overload(overload_cnt=annual_overload,
|
||||
figure_size=figure_size)
|
||||
|
||||
|
||||
# In[94]:
|
||||
|
||||
|
||||
def collapse_months_csv_data(months_csv_data, column_name,pv_capacies, ess_capacities):
|
||||
data = {}
|
||||
for pv_capacity in pv_capacities:
|
||||
data[pv_capacity] = {}
|
||||
for ess_capacity in ess_capacities:
|
||||
annual_data = []
|
||||
for index, month_data in enumerate(months_data):
|
||||
annual_data.extend(months_csv_data[index][column_name][pv_capacity][ess_capacity])
|
||||
# months_csv_data[index][column_name][pv_capacity][ess_capacity] = months_csv_data[index][column_name][pv_capacity][ess_capacity].tolist()
|
||||
|
||||
data[pv_capacity][ess_capacity] = annual_data
|
||||
return data
|
||||
|
||||
|
||||
# In[102]:
|
||||
|
||||
|
||||
annual_pv_gen = collapse_months_csv_data(months_csv_data, "pv_generate", pv_capacities, ess_capacities)
|
||||
annual_time = collapse_months_csv_data(months_csv_data, "time", pv_capacities, ess_capacities)
|
||||
annual_buy_price = collapse_months_csv_data(months_csv_data, "buy_price",pv_capacities, ess_capacities)
|
||||
annual_sell_price = collapse_months_csv_data(months_csv_data, "sell_price", pv_capacities, ess_capacities)
|
||||
annual_factory_demand = collapse_months_csv_data(months_csv_data, "factory_demand", pv_capacities, ess_capacities)
|
||||
annual_grid_need_power = collapse_months_csv_data(months_csv_data, "grid_need_power", pv_capacities, ess_capacities)
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
for pv_capacity in pv_capacities:
|
||||
for ess_capacity in ess_capacities:
|
||||
with open(f'data/annual_data-pv-{pv_capacity}-ess-{ess_capacity}.csv', 'w') as f:
|
||||
f.write("date, time,pv_generate (kW),factory_demand (kW),buy_price (USD/MWh),sell_price (USD/MWh),grid_need_power (kW)\n")
|
||||
start_date = datetime(2023, 1, 1, 0, 0, 0)
|
||||
for i in range(len(annual_time[pv_capacity][ess_capacity])):
|
||||
current_date = start_date + timedelta(hours=i)
|
||||
formate_date = current_date.strftime("%Y-%m-%d")
|
||||
f.write(f"{formate_date},{annual_time[pv_capacity][ess_capacity][i]},{int(annual_pv_gen[pv_capacity][ess_capacity][i])},{int(annual_factory_demand[pv_capacity][ess_capacity][i])},{int(annual_buy_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_sell_price[pv_capacity][ess_capacity][i]*1000)},{int(annual_grid_need_power[pv_capacity][ess_capacity][i])} \n")
|
||||
|
||||
|
||||
|
||||
# In[96]:
|
||||
|
||||
|
||||
def save_data(data, filename):
|
||||
data.to_csv(filename+'.csv')
|
||||
data.to_json(filename + '.json')
|
||||
|
||||
|
||||
# In[97]:
|
||||
|
||||
|
||||
if not os.path.isdir('data'):
|
||||
os.makedirs('data')
|
||||
|
||||
@ -411,8 +557,15 @@ save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess
|
||||
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
|
||||
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
|
||||
|
||||
|
||||
# In[98]:
|
||||
|
||||
|
||||
draw_results(annual_result, 'plots/test.png', 'test', False)
|
||||
|
||||
|
||||
# In[99]:
|
||||
|
||||
|
||||
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)
|
||||
|
||||
|
18
read_data.py
18
read_data.py
@ -1,17 +1,25 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import csv
|
||||
import json
|
||||
|
||||
pv_yield_file_name = 'read_data/Serbia.csv'
|
||||
with open('config.json', 'r') as f:
|
||||
js_data = json.load(f)
|
||||
|
||||
pv_yield_file_name = js_data["data_path"]["pv_yield"]
|
||||
print(pv_yield_file_name)
|
||||
# factory_demand_file_name = 'factory_power1.xlsx'
|
||||
factory_demand_file_name = 'read_data/factory_power1.csv'
|
||||
electricity_price_data = 'read_data/electricity_price_data.csv'
|
||||
electricity_price_data_sell = 'read_data/electricity_price_data_sell.csv'
|
||||
factory_demand_file_name = js_data["data_path"]["demand"]
|
||||
print(factory_demand_file_name)
|
||||
electricity_price_data = js_data["data_path"]["buy"]
|
||||
print(electricity_price_data)
|
||||
electricity_price_data_sell = js_data["data_path"]["sell"]
|
||||
print(electricity_price_data_sell)
|
||||
|
||||
pv_df = pd.read_csv(pv_yield_file_name, index_col='Time', usecols=['Time', 'PV yield[kW/kWp]'])
|
||||
pv_df.index = pd.to_datetime(pv_df.index)
|
||||
|
||||
df_power = pd.read_csv('factory_power1.csv', index_col='Time', usecols=['Time', 'FactoryPower'])
|
||||
df_power = pd.read_csv(factory_demand_file_name, index_col='Time', usecols=['Time', 'FactoryPower'])
|
||||
df_power.index = pd.to_datetime(df_power.index)
|
||||
df_combined = pv_df.join(df_power)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user