import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd import os import seaborn as sns import json from matplotlib.colors import LinearSegmentedColormap def read_data(file_name: str): with open(file_name, 'r') as f: data = json.load(f) for key, value in data.items(): for subkey, subvalue in value.items(): data[key][subkey] = float(subvalue) df = pd.DataFrame.from_dict(data, orient='index') df.index = pd.to_numeric(df.index) df.columns = pd.to_numeric(df.columns) return df def draw_results(results, filename, title, annot_benefit=False, figure_size=(10, 10)): df= results df = df.astype(float) df.index = df.index / 1000 df.columns = df.columns / 1000 min_value = df.min().min() max_value = df.max().max() max_scale = max(abs(min_value/1000), abs(max_value/1000)) plt.figure(figsize=figure_size) cmap = sns.color_palette("coolwarm", as_cmap=True) ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit) ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, _: f"{x:.2f}")) # ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f')) plt.title(title) plt.gca().invert_yaxis() plt.xlabel('ESS Capacity (MWh)') plt.ylabel('PV Capacity (MW)') plt.savefig(filename) def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)): df = costs df = df.astype(int) print(df.index) df.index = df.index / 1000 print(df.columns) df.columns = df.columns / 1000 plt.figure(figsize=figure_size) sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost) plt.title(title_cost) plt.gca().invert_yaxis() plt.xlabel('ESS Capacity (MWh)') plt.ylabel('PV Capacity (MW)') print(filename) plt.savefig(filename) def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10)): df = overload_cnt df = df.astype(int) df.index = df.index / 1000 df.columns = df.columns / 1000 min_value = df.min().min() max_value = df.max().max() max_scale = max(abs(min_value/1000), abs(max_value/1000)) plt.figure(figsize=figure_size) cmap = LinearSegmentedColormap.from_list("", ["white", "blue"]) ax = sns.heatmap(df/(4*24*365), fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet) cbar = ax.collections[0].colorbar cbar.set_ticks([0, 0.25, 0.5, 0.75, 1]) cbar.set_ticklabels(['0%', '25%', '50%', '75%', '100%']) cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}')) plt.title(title_unmet) plt.gca().invert_yaxis() plt.xlabel('ESS Capacity (MWh)') plt.ylabel('PV Capacity (MW)') plt.savefig(filename) directory = 'data/' file_list = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))] split_files = [f.split('-') for f in file_list] for f in split_files: print(f[-1]) costs_files = [f for f in split_files if f[-1].endswith('costs.json')] print(f'find costs files: {costs_files}') overload_files = [f for f in split_files if f[-1].endswith('overload_cnt.json')] print(f'find overload files: {overload_files}') results_files = [f for f in split_files if f[-1].endswith('results.json')] print(f'find results files: {results_files}') costs_dfs = [read_data(directory + '-'.join(f)) for f in costs_files] overload_dfs = [read_data(directory + '-'.join(f)) for f in overload_files] results_dfs = [read_data(directory + '-'.join(f)) for f in results_files] for costs_df, overload_df, results_df in zip(costs_dfs, overload_dfs, results_dfs): # print(costs_df.index) # print(pd.to_numeric(costs_df.columns)) # costs_df.index = pd.to_numeric(costs_df.columns ) # costs_df.columns = pd.to_numeric(costs_df.index) print(costs_df) draw_cost(costs_df, f'plots/costs-{int(costs_df.columns[-1])}.png', f'Costs for PV-{int(costs_df.columns[-1])}MW ESS-{int(costs_df.index[-1])}MWh', annot_cost=True) # overload_df.index = pd.to_numeric(overload_df.columns, errors='coerce') # overload_df.columns = pd.to_numeric(overload_df.columns, errors='coerce') print(overload_df) # draw_overload(overload_df, f'plots/overload-{overload_df.columns[-1]}', f'Overload for PV-{overload_df.columns[-1]}MW ESS-{overload_df.index[-1]}MWh', annot_unmet=True) # results_df.index = pd.to_numeric(results_df.columns, errors='coerce') # results_df.columns = pd.to_numeric(results_df.columns, errors='coerce') # draw_results(results_df, f'plots/results-{results_df.columns[-1]}', f'Results for PV-{results_df.columns[-1]}MW ESS-{results_df.index[-1]}MWh', annot_benefit=True)