import pandas as pd import numpy as np import csv sunlight_file_name = 'lightintensity.xlsx' factory_demand_file_name = 'factory_power1.xlsx' df_sunlight = pd.read_excel(sunlight_file_name, header=None, names=['SunlightIntensity']) start_date = '2023-01-01 00:00:00' # 根据数据的实际开始日期调整 hours = pd.date_range(start=start_date, periods=len(df_sunlight), freq='h') df_sunlight['Time'] = hours df_sunlight.set_index('Time', inplace=True) df_sunlight_resampled = df_sunlight.resample('15min').interpolate() df_power = pd.read_excel(factory_demand_file_name, header=None, names=['FactoryPower'], dtype={'FactoryPower': float}) times = pd.date_range(start=start_date, periods=len(df_power), freq='15min') df_power['Time'] = times df_power.set_index('Time',inplace=True) print(df_power.head()) df_combined = df_sunlight_resampled.join(df_power) df_combined.to_csv('combined_data.csv', index=True, index_label='Time') price_data = np.random.uniform(0.3, 0.3, len(times)) # 创建DataFrame price_df = pd.DataFrame(data={'Time': times, 'ElectricityPrice': price_data}) price_df.set_index('Time', inplace=True) # 保存到CSV文件 price_df.to_csv('electricity_price_data.csv', index=True) print(price_df.head()) print("Electricity price data generated and saved.") df_combined2 = df_combined.join(price_df) print(df_combined2.head()) # 保存结果 with open('combined_data.csv', 'w', newline='') as file: writer = csv.writer(file) writer.writerow(['time', 'sunlight', 'demand','price']) cnt = 0 for index, row in df_combined2.iterrows(): time_formatted = index.strftime('%H:%M') writer.writerow([time_formatted, row['SunlightIntensity'], row['FactoryPower'],row['ElectricityPrice']]) print('The file is written to combined_data.csv') # combined_data.to_csv('updated_simulation_with_prices.csv', index=False) print("Simulation data with electricity prices has been updated and saved.")